Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 8(1): 121, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28743860

ABSTRACT

Bone mineral density is known to be a heritable, polygenic trait whereas genetic variants contributing to lean mass variation remain largely unknown. We estimated the shared SNP heritability and performed a bivariate GWAS meta-analysis of total-body lean mass (TB-LM) and total-body less head bone mineral density (TBLH-BMD) regions in 10,414 children. The estimated SNP heritability is 43% (95% CI: 34-52%) for TBLH-BMD, and 39% (95% CI: 30-48%) for TB-LM, with a shared genetic component of 43% (95% CI: 29-56%). We identify variants with pleiotropic effects in eight loci, including seven established bone mineral density loci: WNT4, GALNT3, MEPE, CPED1/WNT16, TNFSF11, RIN3, and PPP6R3/LRP5. Variants in the TOM1L2/SREBF1 locus exert opposing effects TB-LM and TBLH-BMD, and have a stronger association with the former trait. We show that SREBF1 is expressed in murine and human osteoblasts, as well as in human muscle tissue. This is the first bivariate GWAS meta-analysis to demonstrate genetic factors with pleiotropic effects on bone mineral density and lean mass.Bone mineral density and lean skeletal mass are heritable traits. Here, Medina-Gomez and colleagues perform bivariate GWAS analyses of total body lean mass and bone mass density in children, and show genetic loci with pleiotropic effects on both traits.


Subject(s)
Carrier Proteins/genetics , Genetic Pleiotropy , Genome-Wide Association Study/methods , Meta-Analysis as Topic , Musculoskeletal Development/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Body Weight , Bone Density , Child , Female , Gene Expression , Humans , Male , Multivariate Analysis , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
SELECTION OF CITATIONS
SEARCH DETAIL