Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 50(11): 8937-8947, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37710072

ABSTRACT

Increased hyaluronan deposition (HA) in various cancer tissues, including sarcomas, correlates with disease progression. The receptor for hyaluronic acid-mediated motility (RHAMM) expression is elevated in most human cancers. ß-catenin is a critical downstream mediator of the Wnt signaling pathways, facilitating carcinogenic events characterized by deregulated cell proliferation. We previously showed that low molecular weight (LMW) HA/RHAMM/ß-catenin signaling axis increases HT1080 fibrosarcoma cell growth. Here, focusing on mechanistic aspects and utilizing immunofluorescence and immunoprecipitation, we demonstrate that LMW HA treatment enhanced RHAMM intracellular localization (p ≤ 0.001) and RHAMM/ß-catenin colocalization in HT1080 fibrosarcoma cells (p ≤ 0.05). Downregulating endogenous HA attenuated the association of RHAMM/ß-catenin in HT1080 fibrosarcoma cells (p ≤ 0.0.01). Notably, Axin-2, the key ß-catenin degradation complex component, and RHAMM were demonstrated to form a complex primarily to cell membranes, enhanced by LMW HA (p ≤ 0.01). In contrast, LMW HA attenuated the association of ß-catenin and Axin-2 (p ≤ 0.05). The utilization of FH535, a Wnt signaling inhibitor, showed that LMW HA partially rescued the Wnt-dependent growth of HT1080 cells and restored the expression of Wnt/ß-catenin mediators, cyclin-D1 and c-myc (p ≤ 0.05). B6FS fibrosarcoma cells with different HA metabolism do not respond to the LMW HA growth stimulus (p = NS). The present study identifies a novel LMW HA/RHAMM mechanism in a fibrosarcoma model. LMW HA regulates intracellular RHAMM expression, which acts as a scaffold protein binding ß-catenin and Axin-2 at different cellular compartments to increase ß-catenin expression, transcriptional activity, and fibrosarcoma growth.


Subject(s)
Fibrosarcoma , Hyaluronic Acid , Humans , Hyaluronic Acid/pharmacology , Axin Protein/genetics , Axin Protein/metabolism , beta Catenin/metabolism , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Cell Proliferation , Fibrosarcoma/metabolism , Cell Movement , Carrier Proteins , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...