Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.112
Filter
1.
Angew Chem Int Ed Engl ; : e202415811, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289789

ABSTRACT

Regulating chemical drug's responsiveness to gamma radiation is crucial for achieving better therapeutic effects in cancer treatment. Most research focused on thermodynamic chemical structure design, while little attention was paid to kinetic regulate strategy, which possesses greater universality and security. In this study, we achieved a kinetic-based regulate strategy of gamma radiation reaction, through the construction of microphase environment during polymerization of polytelluoxane (PTeO). We designed hydrophobic segments forming large compound micelles (LCMs) assembly to create kinetically favorable higher concentration for radiation-induced reaction. It exhibited a > ten times higher responsiveness and, as far as we know, merely required a minimum dosage of 5 Gy for polymerization to occur. What's more, by taking advantages of the assembly change with Te-O hydrophilic segments and gamma radiation, polymerization became milder with lower polydispersity than previous methods. Such kinetic-based regulate strategy could offer a novel perspective on the design of radiation-responsive chemoradiotherapy and other radiation-induced chemical process.

2.
Article in English | MEDLINE | ID: mdl-39268679

ABSTRACT

Background: Prostate specific membrane antigen (PSMA)-targeted radioligand therapies represent a highly effective treatment for metastatic prostate cancer. However, high and sustain uptake of PSMA-ligands in the salivary glands led to dose limiting dry mouth (xerostomia), especially with α-emitters. The expression of PSMA and histologic analysis couldn't directly explain the toxicity, suggesting a potential off-target mediator for uptake. In this study, we set out to search for possible off-target non-PSMA protein(s) in the salivary glands. Methods: A machine-learning based quantitative structure activity relationship (QSAR) model was built for seeking the possible off-target(s). The resulting target candidates from the model prediction were subjected to further analysis for salivary protein expression and structural homology at key regions required for PSMA-ligand binding. Furthermore, cellular binding assays were performed utilizing multiple cell lines with high expression of the candidate proteins and low expression of PSMA. Finally, PSMA knockout (PSMA-/-) mice were scanned by small animal PET/MR using [68Ga]Ga-PSMA-11 for in-vivo validation. Results: The screening of the trained QSAR model did not yield a solid off-target protein, which was corroborated in part by cellular binding assays. Imaging using PSMA-/- mice further demonstrated markedly reduced PSMA-radioligand uptake in the salivary glands. Conclusion: Uptake of the PSMA-targeted radioligands in the salivary glands remains primarily PSMA-mediated. Further investigations are needed to illustrate a seemingly different process of uptake and retention in the salivary glands than that in prostate cancer.

3.
J Natl Cancer Cent ; 4(2): 128-134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39282581

ABSTRACT

Background: The International Agency for Research on Cancer (IARC) released the latest estimates of the global burden of cancer. We present a comparison of cancer profiles between 2020 and 2022, leveraging data from the Global Cancer Statistics (GLOBOCAN). Methods: Cancer incidence and mortality data were sourced from two different years, 2020 and 2022, in the GLOBOCAN database. We tracked changes in age-standardized incidence and mortality rates, as well as estimated numbers of new cancer cases and deaths of the 15 most common cancer types globally and in China between 2020 and 2022. Additionally, we conducted comparisons to assess alterations in the cancer burden and variations in mortality-to-incidence ratio (MIR) across different regions and countries for both 2020 and 2022. Results: Lung cancer remained the most common cancer and the leading cause of cancer death worldwide. The new cases of thyroid cancer witnessed a sharp increase in 2022. Conversely, the numbers of new cancer cases and deaths from stomach and esophageal cancer decreased significantly in 2022. The geographic distribution of cancer incidence and mortality across six continents in 2022 largely mirrored that of 2020. Higher Human Development Index (HDI) levels in countries corresponded with elevated rates of cancer incidence and mortality, consistent with the previous year. Among 185 countries or territories, China's age-standardized incidence rate (ASIR) ranked 64th and its age-standardized mortality rate (ASMR) ranked 68th, aligning with global averages. Lung cancer continued to impose the greatest burden of incidence and mortality. Stomach, breast, and esophageal cancers showed declines in both case counts and ASIR. Noteworthy reductions in both ASMR and absolute mortality numbers were observed in liver, stomach, and esophageal cancers. The global MIR decreased from 0.516 in 2020 to 0.488 in 2022. MIR trends indicated an upward trajectory with decreasing HDI levels in both 2022 and 2020. While Canada, Germany, India, Italy, Japan, and the United Kingdom demonstrated increasing MIRs, China exhibited the most significant decrease, followed by Russia and the United States. Conclusions: The global landscape of cancer incidence and mortality in 2022 reflects ongoing trends observed in 2020. Cancer burdens vary notably across countries with differing socioeconomic statuses. Decreases in stomach, liver, and esophageal cancer cases and deaths signify progress in cancer control efforts. The decrease in the global MIRs highlights potential improvements in cancer management.

4.
J Am Soc Nephrol ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226371

ABSTRACT

BACKGROUND: Peritubular endothelial cell dropout leading to microvascular rarefaction is a common manifestation of chronic kidney disease (CKD). The role of metabolism reprogramming in peritubular endothelial cell loss in CKD is undetermined. METHODS: Single-cell sequencing and metabolic analysis were used to characterize metabolic profile of peritubular endothelial cells from CKD patients and from CKD mouse models. In vivo and in vitro models demonstrated metabolic reprogramming in peritubular endothelial cells in conditions of CKD and its contribution to microvascular rarefaction. RESULTS: Here, we identified glycolysis as a top dysregulated metabolic pathway in peritubular endothelial cells from CKD patients. Specifically, CKD peritubular endothelial cells were hypoglycolytic while displaying an anti-angiogenic response with decreased proliferation and increased apoptosis. The hypoglycolytic phenotype of peritubular endothelial cells was recapitulated in CKD mouse models and in peritubular endothelial cells stimulated by hydrogen peroxide (H2O2). Mechanically, oxidative stress, through activating a redox sensor kruppel-like transcription factor 9, downregulated the glycolytic activator 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3) expression, thereby reprogramming peritubular endothelial cells towards a hypoglycolytic phenotype. PFKFB3 overexpression in peritubular endothelial cells restored H2O2-induced reduction in glycolysis and cellular ATP levels, and enhanced the G1/S cell cycle transition, enabling peritubular endothelial cells to improve proliferation and reduce apoptosis. Consistently, restoration of peritubular endothelial cell glycolysis in CKD mice, via overexpressing endothelial Pfkfb3, reversed the anti-angiogenic response in peritubular endothelial cells and protected the kidney from microvascular rarefaction and fibrosis. In contrast, suppression of glycolysis by endothelial Pfkfb3 deletion exacerbated microvascular rarefaction and fibrosis in CKD mice. CONCLUSIONS: Our study revealed a disrupted regulation of glycolysis in peritubular endothelial cells as an initiator of microvascular rarefaction in CKD. Restoration of peritubular endothelial cell glycolysis in CKD kidney improved microvascular rarefaction and ameliorated fibrotic lesions.

5.
Sensors (Basel) ; 24(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39275684

ABSTRACT

The adoption of multiprocessor platforms is growing commonplace in Internet of Things (IoT) applications to handle large volumes of sensor data while maintaining real-time performance at a reasonable cost and with low power consumption. Partitioned scheduling is a competitive approach to ensure the temporal constraints of real-time sensor data processing tasks on multiprocessor platforms. However, the problem of partitioning real-time sensor data processing tasks to individual processors is strongly NP-hard, making it crucial to develop efficient partitioning heuristics to achieve high real-time performance. This paper presents an enhanced harmonic partitioned multiprocessor scheduling method for periodic real-time sensor data processing tasks to improve system utilization over the state of the art. Specifically, we introduce a general harmonic index to effectively quantify the harmonicity of a periodic real-time task set. This index is derived by analyzing the variance between the worst-case slack time and the best-case slack time for the lowest-priority task in the task set. Leveraging this harmonic index, we propose two efficient partitioned scheduling methods to optimize the system utilization via strategically allocating the workload among processors by leveraging the task harmonic relationship. Experiments with randomly synthesized task sets demonstrate that our methods significantly surpass existing approaches in terms of schedulability.

6.
Food Res Int ; 194: 114878, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232516

ABSTRACT

There has been a growing interest in incorporating sprouted wheat wholemeal (SWW) into whole grain baking, driven by its heightened nutritional content and improved nutrient bioavailability. This study aimed to assess how substituting soft wheat flour (SWF) with various levels of wheat wholemeal (unsprouted and sprouted) impacts the quality and sensory characteristics of hard pretzel sticks, which are globally enjoyed as popular snacks. The dough samples containing wholemeal did not demonstrate the same extensibility as the SWF dough sample. Additionally, substituting SWF with wholemeal increased the resistance to extension. Analysis of the Raman spectra of SWF and two other selected dough samples containing 75 % unsprouted wheat wholemeal (UWW) or SWW indicated α-helix as the dominant protein secondary structure. As the ratio of wholemeal to SWF increased in both unsprouted and sprouted wheat pretzel samples, protein and fiber content increased and starch content decreased, resulting in a decreased peak viscosity in an RVA (Rapid Visco Analyzer) test. The findings also showed no significant difference in hardness between the SWF pretzel sample and all other samples (p > 0.05), except when SWF was replaced with the highest level (75 %) of SWW, resulting in a significantly softer texture. Color analysis revealed that the introduction of wholemeal led to a decrease in the L* value, indicating a darker surface appearance in the samples, likely due to the presence of bran. Finally, sensory evaluation determined that replacing SWF with 25 % SWW resulted in the creation of a sample most similar to SWF in terms of sensory attributes. This research paves the way for future studies and advancements in the formulation and analysis of pretzel dough, creating opportunities to improve both the quality of the product and consumer satisfaction.


Subject(s)
Flour , Triticum , Triticum/chemistry , Flour/analysis , Humans , Nutritive Value , Taste , Dietary Fiber/analysis , Viscosity , Hardness , Bread/analysis , Whole Grains/chemistry , Food Handling/methods , Snacks , Female , Male , Adult , Starch/chemistry , Cooking/methods
8.
Clin Drug Investig ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242484

ABSTRACT

BACKGROUND: The anti-pruritic effect of placebo in patients with chronic urticaria has gained increasing attention in clinical research. However, the extent of placebo effect and its influencing factors in the treatment of chronic urticaria are not well understood. OBJECTIVE: The objective of this systematic review and meta-analysis was to investigate the effect of placebo on pruritus in patients with chronic urticaria and to explore relevant influencing factors. METHODS: PubMed, Embase, Web of Science, Cochrane Library, and PsycINFO were searched from inception to 10 July, 2024. Primary outcome included pruritus scores. The secondary outcomes focused on global symptoms and quality of life. Subgroup analyses and meta-regression analyses were conducted based on drug types, sample size, participants' age, and other variables. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system and a trial sequential analysis were employed to establish the reliability of evidence. RESULTS: A total of 65 eligible publications (including 67 randomized controlled trials) involving 10,704 patients with chronic urticaria were included. The pruritus scores decreased following placebo treatment (moderate evidence). In addition, favorable results were observed in global symptoms (moderate evidence) and quality of life (low evidence) after placebo treatment. Subgroup analyses indicated that the type of active medication in intervention groups was an influencing factor of placebo effect of pruritus. Meta-regression analyses demonstrated that the anti-pruritic effect of placebo was inversely correlated with sample size and positively correlated with participants' age. A trial sequential analysis provided further support for the anti-pruritic effect of placebo. CONCLUSIONS: A substantial improvement of pruritus after placebo treatment was observed in patients with chronic urticaria. The anti-pruritic effect of placebo varied with sample size, participants' age, and type of active medication used. Future research should further investigate the effect size of placebo and clarify the potential mechanism. PROSPERO REGISTRATION: The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) as CRD42023482608.

9.
Biosens Bioelectron ; 266: 116726, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39226752

ABSTRACT

The oriented design of reticular materials as emitters can significantly enhance the sensitivity of electrochemiluminescence (ECL) sensing analysis for disease markers. However, due to the structural fragility of hydrogen bonds, relational research on hydrogen-bonded organic frameworks (HOFs) has not been thoroughly conducted. Additionally, the modulation of luminescence behavior through HOFs has been rarely reported. In view of this, hydrogen-bonded biohybrid organic frameworks (HBOFs) were synthesized and recruited for ECL immunoassay applications. HBOFs was easily prepared using 6,6',6″,6‴-(pyrene-1,3,6,8-tetrayl)tetrakis(2-naphthoic acid) as linkers via bovine serum albumin (BSA) activated hydrogen-bonded cross-linking. The material exhibited good fluorescence emission characteristics. And the highly ordered topological structure and molecular motion limitation mediated by BSA overcome aggregation-caused quenching and generate strong aggregation induced emission, expressing hydrogen-bond interaction enhanced ECL (HIE-ECL) activity with the participation of tri-n-propylamine. Furthermore, a sandwich immunosensor was constructed employing cobalt-based metal-phenolic network (CMPN) coated ferrocene nanoparticles (FNPs) as quenchers (CMPN@FNPs). Signal closure can be achieved by annihilating the excited state through electron transfer from both CMPN and FNPs. Using a universal disease marker, carcinoembryonic antigen, as the analysis model, the signal-off sensor obtained a detection limit of 0.47 pg/mL within the detection range of 1 pg/mL - 50 ng/mL. The synthesis and application of highly stable HBOFs triggered by proteins provide a reference for the development of new reticular ECL signal labels, and electron transfer model provides flexible solutions for more sensitive sensing analysis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Hydrogen Bonding , Luminescent Measurements , Serum Albumin, Bovine , Biosensing Techniques/methods , Immunoassay/methods , Electrochemical Techniques/methods , Luminescent Measurements/methods , Humans , Serum Albumin, Bovine/chemistry , Animals , Metal-Organic Frameworks/chemistry , Limit of Detection , Cattle , Metallocenes/chemistry , Ferrous Compounds/chemistry , Antibodies, Immobilized/chemistry , Biomarkers/analysis , Cobalt/chemistry
10.
Nat Commun ; 15(1): 6594, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097618

ABSTRACT

Neurons coordinate inter-tissue protein homeostasis to systemically manage cytotoxic stress. In response to neuronal mitochondrial stress, specific neuronal signals coordinate the systemic mitochondrial unfolded protein response (UPRmt) to promote organismal survival. Yet, whether chemical neurotransmitters are sufficient to control the UPRmt in physiological conditions is not well understood. Here, we show that gamma-aminobutyric acid (GABA) inhibits, and acetylcholine (ACh) promotes the UPRmt in the Caenorhabditis elegans intestine. GABA controls the UPRmt by regulating extra-synaptic ACh release through metabotropic GABAB receptors GBB-1/2. We find that elevated ACh levels in animals that are GABA-deficient or lack ACh-degradative enzymes induce the UPRmt through ACR-11, an intestinal nicotinic α7 receptor. This neuro-intestinal circuit is critical for non-autonomously regulating organismal survival of oxidative stress. These findings establish chemical neurotransmission as a crucial regulatory layer for nervous system control of systemic protein homeostasis and stress responses.


Subject(s)
Acetylcholine , Caenorhabditis elegans , Mitochondria , Signal Transduction , Animals , Acetylcholine/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , gamma-Aminobutyric Acid/metabolism , Intestines/physiology , Mitochondria/metabolism , Neurons/metabolism , Oxidative Stress , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Stress, Physiological , Synaptic Transmission/physiology , Unfolded Protein Response
11.
Kidney Int ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39098582

ABSTRACT

A major challenge in prevention and early treatment of organ fibrosis is the lack of valuable tools to assess the evolving profibrotic maladaptive repair after injury in vivo in a non-invasive way. Here, using acute kidney injury (AKI) as an example, we tested the utility of fibroblast activation protein (FAP) imaging for dynamic assessment of maladaptive repair after injury. The temporospatial pattern of kidney FAP expression after injury was first characterized. Single-cell RNA sequencing and immunostaining analysis of patient biopsies were combined to show that FAP was specifically upregulated in kidney fibroblasts after AKI and was associated with fibroblast activation and chronic kidney disease (CKD) progression. This was corroborated in AKI mouse models, where a sustained and exaggerated kidney FAP upregulation was coupled to persistent fibroblast activation and a fibrotic outcome, linking kidney FAP level to post-insult maladaptive repair. Furthermore, using positron emission tomography (PET)/CT scanning with FAP-inhibitor tracers ([18F]FAPI-42, [18F]FAPT) targeting FAP, we demonstrated the feasibility of non-invasively tracking of maladaptive repair evolution toward kidney fibrosis. Importantly, a sustained increase in kidney [18F]FAPT (less hepatobiliary metabolized than [18F]FAPI-42) uptake reflected persistent kidney upregulation of FAP and characterized maladaptive repair after AKI. Kidney [18F]FAPT uptake at hour 2-day 7 correlated with kidney fibrosis 14 days after AKI. Similar changes in [18F]FAPI-42 PET/CT imaging were observed in patients with AKI and CKD progression. Thus, persistent kidney FAP upregulation after AKI was associated with maladaptive repair and a fibrotic outcome. Hence, FAP-specific PET/CT imaging enables dynamic visualization of maladaptive repair after AKI and prediction of kidney fibrosis within a clinically actionable window.

12.
J Diabetes Complications ; 38(10): 108831, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137676

ABSTRACT

AIMS: To compare the time in range (TIR) obtained from self-monitoring of blood glucose (SMBG) with that obtained from continuous glucose monitoring (CGM), and explore the relationship of TIR with microalbuminuria outcome, HOMA-IR and HOMA-ß test. METHODS: We recruited 400 patients with type 2 diabetes to carry out blood glucose monitoring by both SMBG and CGM for 3 consecutive days. TIR, TAR, TBR and other blood glucose variation indices were calculated respectively through the glucose data achieved from SMBG and CGM. The HOMA-IR and HOMA-ß test was evaluated by an oral glucose tolerance test. Urinary microalbumin-to-creatinine ratio completed in the laboratory. RESULTS: The median (25 %, 75 % quartile) of TIRCGM and TIRSMBG were 74.94(44.90, 88.04) and 70.83(46.88, 87.50) respectively, and there was no significant difference, p = 0.489; For every 1 % increase in TIRCGM, the risk of microalbuminuria decreased by 1.6 % (95%CI:0.973, 0.995, p = 0.006) and for every 1 % increase in TIRSMBG, the risk of microalbuminuria decreased by 1.3 % (95%CI:0.975, 0.999, p = 0.033). Stepwise multiple linear regression analysis showed an independent positive correlation between TIR (including TIRCGM and TIRSBMG) and LnDI30 and LnDI120 levels (p = 0.000). CONCLUSIONS: The TIR calculated by SMBG was highly consistent with that reported by CGM and was significantly associated with the risk of microalbuminuria and the HOMA-ß. Higher TIR quartiles were associated with lower incidence of microalbuminuria as well as higher lever of HOMA-ß. For patients with limited CGM application, SMBG-derived TIR may be an alternative to CGM-derived TIR, to assess blood glucose control.


Subject(s)
Albuminuria , Blood Glucose Self-Monitoring , Blood Glucose , Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Albuminuria/diagnosis , Female , Male , Middle Aged , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Blood Glucose/analysis , Blood Glucose/metabolism , Aged , Insulin Resistance/physiology , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/blood , Diabetic Nephropathies/epidemiology , Adult , Time Factors , Glucose Tolerance Test , Continuous Glucose Monitoring
13.
J Mater Chem B ; 12(36): 8902-8910, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39206758

ABSTRACT

Chemodynamic therapy (CDT) is a tumor-specific intervention methodology, which is based on the upregulation of reactive oxygen species (ROS) content by triggering the Fenton or Fenton-like reaction within the tumor microenvironment (TME). However, there are still challenges in achieving high-efficiency CDT on account of both the limited intracellular hydrogen peroxide (H2O2) and delivery efficiency of Fenton metal ions. Copper-based nanotherapeutic systems have attracted extensive attention and have been widely applied in the construction of nanotherapeutic systems and multimodal synergistic therapy. Herein, we propose a strategy to synergize chemotherapy drugs that upregulate intracellular ROS content with chemodynamic therapy and construct an artemisinin-copper nanoprodrug for proof-of-concept. With the proposed biomimetic self-assembly strategy, we successfully construct an injectable nanoprodrug with suitable size distribution and high drug loading content (68.1 wt%) through the self-assembly of amphiphilic artemisinin prodrug and copper ions. After reaching the TME, both Cu2+ ions and free AH drugs can be released from AHCu nanoprodrugs. Subsequently, the disassembled Cu2+ ions are converted into Cu+ ions by consuming the intracellular GSH. The generated Cu+ ions serve as a highly efficient Fenton-like reagent for robust ROS generation from both AH and tumor-over-produced H2O2. Results show that the nanoprodrug can realize the cascade amplification of ROS generation via artemisinin delivery and subsequent in situ Fenton-like reaction and a high tumor inhibition rate of 62.48% in vivo. This work provides a promising strategy for the design and development of an efficient nanoprodrug for tumor-specific treatment.


Subject(s)
Antineoplastic Agents , Artemisinins , Copper , Prodrugs , Reactive Oxygen Species , Copper/chemistry , Copper/pharmacology , Reactive Oxygen Species/metabolism , Artemisinins/chemistry , Artemisinins/pharmacology , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Mice , Animals , Drug Screening Assays, Antitumor , Nanoparticles/chemistry , Cell Proliferation/drug effects , Particle Size , Cell Survival/drug effects , Cell Line, Tumor , Tumor Microenvironment/drug effects
14.
Oncol Lett ; 28(3): 444, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39091583

ABSTRACT

Histone lysine N-methyltransferase 2C (KMT2C) is involved in transcriptional regulation and DNA damage repair. Mutations in KMT2C have been implicated in the progression, metastasis, and drug resistance of multiple cancer types. However, the roles of KMT2C in the regulation of tumor prognosis, immune cell infiltration and the immune microenvironment in these multiple cancer types remain unclear. Therefore, in the present study, data from The Cancer Genome Atlas and Genotype-Tissue Expression databases were used for KMT2C expression analyses. Kaplan-Meier and univariate Cox regression analyses were also performed to investigate the prognostic role of KMT2C. In addition, Gene Set Enrichment Analysis (GSEA) was conducted to study the KMT2C-related signaling pathways. Tumor immune estimation resource 2 and single-sample GSEA were conducted to investigate the correlation between KMT2C expression and immune cell infiltrations, and Spearman's analysis was conducted to study the correlations among KMT2C, tumor mutational burden, microsatellite instability, immune regulators, chemokines and immune receptors. Immunohistochemistry of patient kidney tumor samples was performed to verify the correlation between KMT2C and programmed death-ligand 1 (PD-L1) expression. Finally, RNA interference, wound healing and colony formation assays were conducted to evaluate the effects of KMT2C expression on cell proliferation and metastasis. The results of the present study demonstrated that KMT2C was highly expressed in multiple cancer types, was a protective factor in kidney renal clear cell carcinoma and ovarian serous cystadenocarcinoma, and a risk factor for lung squamous cell carcinoma and uveal melanoma. In addition, KMT2C levels were negatively correlated with immune-activated pathways and the infiltration of immune cells, and positively correlated with inhibitory immune factors and tumor angiogenesis. Patients with low KMT2C expression had higher objective response rates to immunotherapy, and drug sensitivity analysis indicated that topoisomerase, histone deacetylase, DOT1-like histone H3K79 methyltransferase and G9A nuclear histone lysine methyltransferase inhibitors could potentially be used to treat tumors with high KMT2C expression levels. Finally, the KMT2C and PD-L1 expression levels were shown to be positively correlated, and KMT2C knockdown markedly promoted the proliferation and invasion capacities of A549 cells. In conclusion, the present study revealed that low KMT2C expression may be a promising biomarker for predicting the response of patients with cancer to immunotherapy. Conversely, high KMT2C expression was shown to promote tumor angiogenesis, which may contribute to the formation of the immunosuppressive tumor microenvironment.

15.
BMC Oral Health ; 24(1): 935, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135018

ABSTRACT

BACKGROUND: Melkersson-Rosenthal syndrome (MRS) is a rare neuro-mucocutaneous disorder characterized by recurrent edema, facial palsies, and nerve dysfunctions often associated with the plicata tongue. Although the etiology of MRS is not well understood, there is growing evidence suggesting an autoimmune involvement. CASE PRESENTATION: This paper presents a case report of a 25-year-old male with MRS as the initial symptom, followed by temporomandibular joint osteoarthritis (TMJ-OA). A comprehensive diagnosis and multidisciplinary treatment approach including surgery, local injections, and oral medication were implemented, resulting in a favorable prognosis. CONCLUSIONS: These findings support the hypothesis that MRS is a systemic granulomatous disease caused by autoimmunity, which may also influence the occurrence and development of TMJ-OA through immune-related mechanisms. This study emphasizes the significance of systemic immune regulation in the treatment of patients with MRS and TMJ-OA comorbid conditions.


Subject(s)
Melkersson-Rosenthal Syndrome , Osteoarthritis , Temporomandibular Joint Disorders , Humans , Melkersson-Rosenthal Syndrome/complications , Male , Adult , Temporomandibular Joint Disorders/etiology , Temporomandibular Joint Disorders/therapy , Osteoarthritis/complications , Osteoarthritis/etiology , Combined Modality Therapy
16.
Clin Cosmet Investig Dermatol ; 17: 1827-1839, 2024.
Article in English | MEDLINE | ID: mdl-39155883

ABSTRACT

Background: Emerging evidence links gut microbiota and their by-products, notably short-chain fatty acids (SCFAs), to urticaria. This study employs multiple Mendelian Randomization (MR) analyses to unravel the complex interactions among gut microbiota, SCFAs, and different subtypes of urticaria, aiming to elucidate the underlying mechanisms and enhance future clinical research. Methods: We analyzed published genome-wide association study (GWAS) summary statistics to identify associations between gut microbiota and three common subtypes of urticaria: spontaneous, dermatographic, and temperature-triggered. Initial two-sample and reverse MR analyses explored the causality in these relationships. Subsequent multivariate MR analyses investigated the role of SCFAs in modulating these interactions, with multiple sensitivity analyses to ensure robustness. Findings: Specific taxa were differently associated with various urticaria subtypes. From microbiota to urticaria: one taxon was negatively associated with dermatographic urticaria; seven taxa were negatively associated and four positively associated with temperature-triggered urticaria; four taxa were negatively associated and six positively associated with spontaneous urticaria. Conversely, from urticaria to microbiota: five taxa were negatively associated with dermatographic urticaria; four were negatively and two positively associated with temperature-triggered urticaria; and two were negatively associated with spontaneous urticaria. These associations were observed at a nominal significance level (P < 0.05). After applying Bonferroni correction for multiple testing, these associations did not reach statistical significance. The observed trends, however, provide insights into potential microbiota-urticaria interactions. Multivariate MR analyses elucidated the role of SCFAs, particularly acetate, which plays a crucial role in modulating immune response. Adjusting for acetate revealed direct effects of Actinobacteria, Bifidobacteriales, and Bifidobacteriaceae on spontaneous urticaria, with corresponding mediation effects of -22%, -24.9%, and -24.9% respectively. Similarly, adjustments for Alcaligenaceae and Betaproteobacteria indicated significant negative effects of acetate on dermatographic and spontaneous urticaria, with mediation effects of -21.7% and -23.7%, respectively. Conclusion: This study confirms the interconnected roles of gut microbiota, SCFAs, and urticaria. It highlights SCFAs' potential mediating role in influencing urticaria through microbiota, providing insights for future therapeutic strategies.

17.
China CDC Wkly ; 6(32): 799-803, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39157046

ABSTRACT

What is already known about this topic?: Fractures are a common and serious injury among children. While many studies have utilized clinical data, there is a lack of large-scale community-based research in China. What is added by this report?: This cross-sectional study provides national and regionally representative data on the prevalence of fractures among Chinese children aged 6-17 years (6.93%), with higher rates observed in males than in females (8.13% vs. 5.71%) and in rural areas compared to urban areas (7.22% vs. 6.62%). The most common site of fracture was the upper limbs (4.24%, accounting for 63.0% of fractures). What are the implications for public health practice?: The need to enhance awareness of fracture prevention is critical, particularly for children in rural areas and males in middle childhood. We recommend that local authorities increase investments in educational programs and child safety oversight. Additionally, promoting balanced diets for children, training in proper exercise techniques, and reinforcing participation in outdoor sports are essential.

18.
Nat Commun ; 15(1): 6884, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128930

ABSTRACT

Fertility requires the faithful proliferation of germ cells and their differentiation into gametes. Controlling these cellular states demands precise timing and expression of gene networks. Nucleic acid binding proteins (NBPs) play critical roles in gene expression networks that influence germ cell development. There has, however, been no functional analysis of the entire NBP repertoire in controlling in vivo germ cell development. Here, we analyzed germ cell states and germline architecture to systematically investigate the function of 364 germline-expressed NBPs in the Caenorhabditis elegans germ line. Using germline-specific knockdown, automated germ cell counting, and high-content analysis of germ cell nuclei and plasma membrane organization, we identify 156 NBPs with discrete autonomous germline functions. By identifying NBPs that control the germ cell cycle, proliferation, differentiation, germline structure and fertility, we have created an atlas for mechanistic dissection of germ cell behavior and gamete production.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Germ Cells , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Germ Cells/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental , Cell Differentiation/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Fertility/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Proliferation/genetics , Cell Cycle/genetics , Male , Gene Regulatory Networks
19.
Small ; : e2402763, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183531

ABSTRACT

The primary challenges in tumor imaging and therapy revolve around improving targeting efficiency, enhancing probe/drug delivery efficacy, and minimizing off-target signals and toxicity. Although various carriers have been developed, many are difficult to synthesize, costly, and not universally applicable. Furthermore, numerous carriers exhibit limited delivery rates in solid tumors, particularly larger nanocarriers. To address these challenges, a simple binary co-assembly drug delivery platform has been designed using the readily synthesized small molecule Cys(SEt)-Lys-CBT (CKCBT) as the self-assembly building block. CKCBT can effectively penetrate tumor cells due to its positively charged Lys side chain and small size. Upon glutathione reduction, CKCBT co-assembles with Nile red or Chlorin e6 to form nanofibers inside tumor cells. This enables their specific accumulation in tumor cells rather than normal cells and extends their exposure time, resulting in precise and enhanced tumor imaging and treatment. Hence, this uncomplicated and highly efficient binary co-assembly drug delivery platform can be easily adapted to a broad spectrum of probes and drugs, presenting a novel approach for advancing clinical diagnosis and therapy.

20.
Eur J Pharmacol ; 982: 176935, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39182550

ABSTRACT

Myocarditis is characterized as local or diffuse inflammatory lesions in the myocardium, primarily caused by viruses and other infections. It is a common cause of sudden cardiac death and dilated cardiomyopathy. In recent years, the global prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the widespread vaccination have coincided with a notable increase in the number of reported cases of myocarditis. In light of the potential threat that myocarditis poses to global public health, numerous studies have sought to elucidate the pathogenesis of this condition. However, despite these efforts, effective treatment strategies remain elusive. To collate the current research advances in myocarditis, and thereby provide possible directions for further research, this review summarizes the mechanisms involved in viral invasion of the organism and primarily focuses on how viruses trigger excessive inflammatory responses and in result in different types of cell death. Furthermore, this article outlines existing therapeutic approaches and potential therapeutic targets for the acute phase of myocarditis. In particular, immunomodulatory treatments are emphasized and suggested as the most extensively studied and clinically promising therapeutic options.


Subject(s)
COVID-19 , Myocarditis , Myocarditis/virology , Myocarditis/therapy , Myocarditis/immunology , Humans , Animals , COVID-19/virology , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL