Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Methods Mol Biol ; 2682: 233-244, 2023.
Article in English | MEDLINE | ID: mdl-37610586

ABSTRACT

Enzyme-linked Immunosorbent assays or ELISAs are a versatile method for detecting various immunological ligands of interest. As the name suggests, ELISAs rely on the interaction between a ligand and an antibody to produce results. In the study of infectious disease, ELISAs are commonly used to determine if a pathogen-specific immune response has occurred in a host organism. These assays can be performed in serosurveys as part of epidemiological investigations during, or following, an infectious disease outbreak. In the research environment, ELISAs are used to quantify the humoral immune response following infection or vaccination of a host organism. Data from these assays can be used to determine the type of immune response elicited (e.g. IgG1 vs IgG2) and the robustness of the response. Here, we describe ELISAs that were developed for the study of either hamsters or non-human primates vaccinated against Nipah virus infection, or infected with Nipah virus. The ELISAs described include assays for both IgG and IgM in the hamster and non-human primate models for Nipah virus-induced disease. An assay was also developed for the detection of IgA in bronchoalveolar lavage from non-human primates.


Subject(s)
Biological Assay , Immunoglobulin G , Animals , Cricetinae , Enzyme-Linked Immunosorbent Assay , Bronchoalveolar Lavage , Primates
2.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: mdl-34807849

ABSTRACT

Sangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog). When we investigated sangivamycin's potential for clinical administration, pharmacokinetic; absorption, distribution, metabolism, and excretion (ADME); and toxicity properties were found to be favorable. When tested in combination with remdesivir, efficacy was additive rather than competitive against SARS-CoV-2. The proven safety in humans, long half-life, potent antiviral activity (compared to remdesivir), and combinatorial potential suggest that sangivamycin is likely to be efficacious alone or in combination therapy to suppress viremia in patients. Sangivamycin may also have the ability to help combat drug-resistant or vaccine-escaping SARS-CoV-2 variants since it is antivirally active against several tested variants. Our results support the pursuit of sangivamycin for further preclinical and clinical development as a potential coronavirus disease 2019 therapeutic.


Subject(s)
Antiviral Agents , Pyrimidine Nucleosides , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Antiviral Agents/toxicity , COVID-19/virology , Cell Line, Tumor , Cell Survival/drug effects , Chlorocebus aethiops , Female , Humans , Male , Mice , Pyrimidine Nucleosides/pharmacokinetics , Pyrimidine Nucleosides/pharmacology , Pyrimidine Nucleosides/toxicity , Vero Cells
3.
Viruses ; 13(5)2021 05 12.
Article in English | MEDLINE | ID: mdl-34065987

ABSTRACT

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic expanded, it was clear that effective testing for the presence of neutralizing antibodies in the blood of convalescent patients would be critical for development of plasma-based therapeutic approaches. To address the need for a high-quality neutralization assay against SARS-CoV-2, a previously established fluorescence reduction neutralization assay (FRNA) against Middle East respiratory syndrome coronavirus (MERS-CoV) was modified and optimized. The SARS-CoV-2 FRNA provides a quantitative assessment of a large number of infected cells through use of a high-content imaging system. Because of this approach, and the fact that it does not involve subjective interpretation, this assay is more efficient and more accurate than other neutralization assays. In addition, the ability to set robust acceptance criteria for individual plates and specific test wells provided further rigor to this assay. Such agile adaptability avails use with multiple virus variants. By February 2021, the SARS-CoV-2 FRNA had been used to screen over 5000 samples, including acute and convalescent plasma or serum samples and therapeutic antibody treatments, for SARS-CoV-2 neutralizing titers.


Subject(s)
Antibodies, Neutralizing/analysis , COVID-19/immunology , Neutralization Tests/methods , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/metabolism , COVID-19/therapy , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunization, Passive , Immunoglobulin G/blood , Pandemics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Serotherapy
4.
Viruses ; 13(4)2021 04 07.
Article in English | MEDLINE | ID: mdl-33917085

ABSTRACT

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b', is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Subject(s)
Arterivirus/genetics , DNA, Complementary/genetics , Green Fluorescent Proteins/genetics , Open Reading Frames , RNA, Viral/genetics , Recombination, Genetic , Virus Replication/genetics , Animals , Arterivirus/physiology , Cell Line , Chiroptera , Hominidae , Humans , Plasmids/genetics , Proof of Concept Study , Rodentia
5.
bioRxiv ; 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33688658

ABSTRACT

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic was expanding, it was clear that effective testing for the presence of neutralizing antibodies in the blood of convalescent patients would be critical for development of plasma-based therapeutic approaches. To address the need for a high-quality neutralization assay against SARS-CoV-2, a previously established fluorescence reduction neutralization assay (FRNA) against Middle East respiratory syndrome coronavirus (MERS-CoV) was modified and optimized. The SARS-CoV-2 FRNA provides a quantitative assessment of a large number of infected cells through use of a high-content imaging system. Because of this approach, and the fact that it does not involve subjective interpretation, this assay is more efficient and more accurate than other neutralization assays. In addition, the ability to set robust acceptance criteria for individual plates and specific test wells provided further rigor to this assay. Such agile adaptability avails use with multiple virus variants. By February 2021, the SARS-CoV-2 FRNA had been used to screen over 5,000 samples, including acute and convalescent plasma or serum samples and therapeutic antibody treatments, for SARS-CoV-2 neutralizing titers.

6.
PLoS One ; 16(1): e0245024, 2021.
Article in English | MEDLINE | ID: mdl-33411835

ABSTRACT

Ebola virus (EBOV), a member of the mononegaviral family Filoviridae, causes severe disease associated with high lethality in humans. Despite enormous progress in development of EBOV medical countermeasures, no anti-EBOV treatment has been approved. We designed an immunotoxin in which a single-chain variable region fragment of the EBOV glycoprotein-specific monoclonal antibody 6D8 was fused to the effector domains of Pseudomonas aeruginosa exotoxin A (PE38). This immunotoxin, 6D8-PE38, bound specifically to cells expressing EBOV glycoproteins. Importantly, 6D8-PE38 targeted EBOV-infected cells, as evidenced by inhibition of infectious EBOV production from infected cells, including primary human macrophages. The data presented here provide a proof of concept for immunotoxin-based targeted killing of infected cells as a potential antiviral intervention for Ebola virus disease.


Subject(s)
Ebolavirus/drug effects , Glycoproteins/immunology , Immunotoxins/pharmacology , Virus Replication/drug effects , Cell Line, Tumor , Ebolavirus/immunology , Humans , Viral Envelope Proteins/immunology
7.
Viruses ; 12(8)2020 07 29.
Article in English | MEDLINE | ID: mdl-32751087

ABSTRACT

Mammarenaviruses cause chronic infections in rodents, which are their predominant natural hosts. Human infection with some of these viruses causes high-consequence disease, posing significant issues in public health. Currently, no FDA-licensed mammarenavirus vaccines are available, and anti-mammarenavirus drugs are limited to an off-label use of ribavirin, which is only partially efficacious and associated with severe side effects. Dihydroorotate dehydrogenase (DHODH) inhibitors, which block de novo pyrimidine biosynthesis, have antiviral activity against viruses from different families, including Arenaviridae, the taxonomic home of mammarenaviruses. Here, we evaluate five novel DHODH inhibitors for their antiviral activity against mammarenaviruses. All tested DHODH inhibitors were potently active against lymphocytic choriomeningitis virus (LCMV) (half-maximal effective concentrations [EC50] in the low nanomolar range, selectivity index [SI] > 1000). The tested DHODH inhibitors did not affect virion cell entry or budding, but rather interfered with viral RNA synthesis. This interference resulted in a potent interferon-independent inhibition of mammarenavirus multiplication in vitro, including the highly virulent Lassa and Junín viruses.


Subject(s)
Antiviral Agents/pharmacology , Arenaviridae/drug effects , Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Animals , Arenaviridae/classification , Arenaviridae/physiology , Chlorocebus aethiops , Dihydroorotate Dehydrogenase , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , HEK293 Cells , Humans , Interferons , Mice , Mice, Inbred C57BL , Nucleic Acid Synthesis Inhibitors/chemistry , Nucleic Acid Synthesis Inhibitors/pharmacology , Pyrimidines/biosynthesis , Vero Cells , Virus Replication/drug effects
8.
mBio ; 11(2)2020 03 24.
Article in English | MEDLINE | ID: mdl-32209677

ABSTRACT

Lassa virus (LASV) poses a significant public health problem within the regions of Lassa fever endemicity in Western Africa. LASV infects several hundred thousand individuals yearly, and a considerable number of Lassa fever cases are associated with high morbidity and lethality. No approved LASV vaccine is available, and current therapy is limited to an off-label usage of ribavirin that is only partially effective and associated with significant side effects. The impact of Lassa fever on human health, together with the limited existing countermeasures, highlights the importance of developing effective vaccines against LASV. Here, we present the development and characterization of a recombinant LASV (rLASV) vaccine candidate [rLASV(IGR/S-S)], which is based on the presence of the noncoding intergenic region (IGR) of the small (S) genome segment (S-IGR) in both large (L) and S LASV segments. In cultured cells, rLASV(IGR/S-S) was modestly less fit than wild-type rLASV (rLASV-WT). rLASV(IGR/S-S) was highly attenuated in guinea pigs, and a single subcutaneous low dose of the virus completely protected against otherwise lethal infection with LASV-WT. Moreover, rLASV(IGR/S-S) was genetically stable during serial passages in cultured cells. These findings indicate that rLASV(IGR/S-S) can be developed into a LASV live-attenuated vaccine (LAV) that has the same antigenic composition as LASV-WT and a well-defined mechanism of attenuation that overcomes concerns about increased virulence that could be caused by genetic changes in the LAV during multiple rounds of multiplication.IMPORTANCE Lassa virus (LASV), the causative agent of Lassa fever, infects several hundred thousand people in Western Africa, resulting in many lethal Lassa fever cases. No U.S. Food and Drug Administration-licensed countermeasures are available to prevent or treat LASV infection. We describe the generation of a novel LASV live-attenuated vaccine candidate rLASV(IGR/S-S), which is based on the replacement of the large genomic segment noncoding intergenic region (IGR) with that of the small genome segment. rLASV(IGR/S-S) is less fit in cell culture than wild-type virus and does not cause clinical signs in inoculated guinea pigs. Importantly, rLASV(IGR/S-S) protects immunized guinea pigs against an otherwise lethal exposure to LASV.


Subject(s)
DNA, Intergenic , Gene Rearrangement , Lassa Fever/prevention & control , Viral Vaccines/genetics , A549 Cells , Animals , Female , Guinea Pigs , HEK293 Cells , Humans , Injections, Subcutaneous , Lassa Fever/immunology , Lassa virus/genetics , Lassa virus/immunology , Male , Vaccination , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Viral Vaccines/immunology
9.
mBio ; 11(1)2020 02 25.
Article in English | MEDLINE | ID: mdl-32098811

ABSTRACT

Lassa virus (LASV) is endemic in Western Africa and is estimated to infect hundreds of thousands of individuals annually. A considerable number of these infections result in Lassa fever (LF), which is associated with significant morbidity and a case-fatality rate as high as 69% among hospitalized confirmed patients. U.S. Food and Drug Administration-approved LF vaccines are not available. Current antiviral treatment is limited to off-label use of a nucleoside analogue, ribavirin, that is only partially effective and associated with significant side effects. We generated and characterized a recombinant LASV expressing a codon-deoptimized (CD) glycoprotein precursor gene (GPC), rLASV-GPC/CD. Comparison of growth kinetics and peak titers showed that rLASV-GPC/CD is slightly attenuated in cell culture compared to wild-type (WT) recombinant LASV (rLASV-WT). However, rLASV-GPC/CD is highly attenuated in strain 13 and Hartley guinea pigs, as reflected by the absence of detectable clinical signs in animals inoculated with rLASV-GPC/CD. Importantly, a single subcutaneous dose of rLASV-GPC/CD provides complete protection against an otherwise lethal exposure to LASV. Our results demonstrate the feasibility of implementing a CD approach for developing a safe and effective LASV live-attenuated vaccine candidate. Moreover, rLASV-GPC/CD might provide investigators with a tool to safely study LASV outside maximum (biosafety level 4) containment, which could accelerate the elucidation of basic aspects of the molecular and cell biology of LASV and the development of novel LASV medical countermeasures.IMPORTANCE Lassa virus (LASV) infects several hundred thousand people in Western Africa, resulting in many lethal Lassa fever (LF) cases. Licensed LF vaccines are not available, and anti-LF therapy is limited to off-label use of the nucleoside analog ribavirin with uncertain efficacy. We describe the generation of a novel live-attenuated LASV vaccine candidate. This vaccine candidate is based on mutating wild-type (WT) LASV in a key region of the viral genome, the glycoprotein precursor (GPC) gene. These mutations do not change the encoded GPC but interfere with its production in host cells. This mutated LASV (rLASV-GPC/CD) behaves like WT LASV (rLASV-WT) in cell culture, but in contrast to rLASV-WT, does not cause disease in inoculated guinea pigs. Guinea pigs immunized with rLASV-GPC/CD were protected against an otherwise lethal exposure to WT LASV. Our results support the testing of this candidate vaccine in nonhuman primate models ofLF.


Subject(s)
Lassa Fever/prevention & control , Lassa virus/genetics , Lassa virus/immunology , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , A549 Cells , Africa, Western , Amino Acid Sequence , Animals , Arenaviridae , Arenavirus , Bunyaviridae , Chlorocebus aethiops , Codon , Disease Models, Animal , Female , Genes, Viral/genetics , Genome, Viral , Glycoproteins/genetics , Guinea Pigs , Humans , Lassa Fever/immunology , Lassa Fever/virology , Male , Ribavirin , Vaccines, Attenuated/genetics , Vero Cells
11.
Viruses ; 12(1)2020 01 15.
Article in English | MEDLINE | ID: mdl-31952352

ABSTRACT

For highly pathogenic viruses, reporter assays that can be rapidly performed are critically needed to identify potentially functional mutations for further study under maximal containment (e.g., biosafety level 4 [BSL-4]). The Ebola virus nucleoprotein (NP) plays multiple essential roles during the viral life cycle, yet few tools exist to study the protein under BSL-2 or equivalent containment. Therefore, we adapted reporter assays to measure NP oligomerization and virion-like particle (VLP) production in live cells and further measured transcription and replication using established minigenome assays. As a proof-of-concept, we examined the NP-R111C substitution, which emerged during the 2013‒2016 Western African Ebola virus disease epidemic and rose to high frequency. NP-R111C slightly increased NP oligomerization and VLP budding but slightly decreased transcription and replication. By contrast, a synthetic charge-reversal mutant, NP-R111E, greatly increased oligomerization but abrogated transcription and replication. These results are intriguing in light of recent structures of NP oligomers, which reveal that the neighboring residue, K110, forms a salt bridge with E349 on adjacent NP molecules. By developing and utilizing multiple reporter assays, we find that the NP-111 position mediates a complex interplay between NP's roles in protein structure, virion budding, and transcription and replication.


Subject(s)
Amino Acids/chemistry , Ebolavirus/genetics , Genome, Viral , Nucleocapsid Proteins/chemistry , Virus Release , Amino Acids/genetics , Ebolavirus/chemistry , Ebolavirus/physiology , HEK293 Cells , Humans , Nucleocapsid Proteins/genetics , Proof of Concept Study , Virion/physiology , Virus Assembly
12.
Viruses ; 13(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396288

ABSTRACT

Filoviruses, such as Ebola virus and Marburg virus, are of significant human health concern. From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities. Although there is progress in medical countermeasure (MCM) development (in particular, vaccines and antibody-based therapeutics), the need for efficacious small-molecule therapeutics remains unmet. Here we describe a novel high-throughput screening assay to identify inhibitors of Ebola virus VP40 matrix protein association with viral particle assembly sites on the interior of the host cell plasma membrane. Using this assay, we screened nearly 3000 small molecules and identified several molecules with the desired inhibitory properties. In secondary assays, one identified compound, sangivamycin, inhibited not only Ebola viral infectivity but also that of other viruses. This finding indicates that it is possible for this new VP40-based screening method to identify highly potent MCMs against Ebola virus and its relatives.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Nucleoproteins/antagonists & inhibitors , Viral Core Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Ebolavirus/genetics , Gene Expression Regulation, Viral/drug effects , HEK293 Cells , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/virology , Humans , Medical Countermeasures , Molecular Structure , Nucleoproteins/chemistry , Pyrimidine Nucleosides/pharmacology , Vero Cells , Viral Core Proteins/chemistry , Virus Release/drug effects
13.
Cell Rep ; 29(8): 2175-2183.e4, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31747592

ABSTRACT

All viruses balance interactions between cellular machinery co-opted to support replication and host factors deployed to halt the infection. We use gene correlation analysis to perform an unbiased screen for host factors involved in influenza A virus (FLUAV) infection. Our screen identifies the cellular factor epidermal growth factor receptor pathway substrate 8 (EPS8) as the highest confidence pro-viral candidate. Knockout and overexpression of EPS8 confirm its importance in enhancing FLUAV infection and titers. Loss of EPS8 does not affect virion attachment, uptake, or fusion. Rather, our data show that EPS8 specifically functions during virion uncoating. EPS8 physically associates with incoming virion components, and subsequent nuclear import of released ribonucleoprotein complexes is significantly delayed in the absence of EPS8. Our study identifies EPS8 as a host factor important for uncoating, a crucial step of FLUAV infection during which the interface between the virus and host is still being discovered.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Influenza A virus/pathogenicity , Adaptor Proteins, Signal Transducing/genetics , Humans , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Virion/genetics , Virion/metabolism
14.
PLoS One ; 14(8): e0221407, 2019.
Article in English | MEDLINE | ID: mdl-31454374

ABSTRACT

Antibody titers against a viral pathogen are typically measured using an antigen binding assay, such as an enzyme-linked immunosorbent assay (ELISA), which only measures the ability of antibodies to identify a viral antigen of interest. Neutralization assays measure the presence of virus-neutralizing antibodies in a sample. Traditional neutralization assays, such as the plaque reduction neutralization test (PRNT), are often difficult to use on a large scale due to being both labor and resource intensive. Here we describe an Ebola virus fluorescence reduction neutralization assay (FRNA), which tests for neutralizing antibodies, that requires only a small volume of sample in a 96-well format and is easy to automate. The readout of the FRNA is the percentage of Ebola virus-infected cells measured with an optical reader or overall chemiluminescence that can be generated by multiple reading platforms. Using blinded human clinical samples (EVD survivors or contacts) obtained in Liberia during the 2013-2016 Ebola virus disease outbreak, we demonstrate there was a high degree of agreement between the FRNA-measured antibody titers and the Filovirus Animal Non-clinical Group (FANG) ELISA titers with the FRNA providing information on the neutralizing capabilities of the antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Animals , Antibodies, Blocking/immunology , Chlorocebus aethiops , Disease Outbreaks , Ebolavirus/pathogenicity , Enzyme-Linked Immunosorbent Assay , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Humans , Liberia , Neutralization Tests/methods , Vero Cells
15.
Antiviral Res ; 169: 104558, 2019 09.
Article in English | MEDLINE | ID: mdl-31302150

ABSTRACT

Several mammarenaviruses, chiefly Lassa virus (LASV) in Western Africa and Junín virus (JUNV) in the Argentine Pampas, cause severe disease in humans and pose important public health problems in their endemic regions. Moreover, mounting evidence indicates that the worldwide-distributed mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. The lack of licensed mammarenavirus vaccines and partial efficacy of current anti-mammarenavirus therapy limited to an off-label use of the nucleoside analog ribavirin underscore an unmet need for novel therapeutics to combat human pathogenic mammarenavirus infections. This task can be facilitated by the implementation of "drug repurposing" strategies to reduce the time and resources required to advance identified antiviral drug candidates into the clinic. We screened a drug repurposing library of 11,968 compounds (Repurposing, Focused Rescue and Accelerated Medchem [ReFRAME]) and identified several potent inhibitors of LCMV multiplication that had also strong anti-viral activity against LASV and JUNV. Our findings indicate that enzymes of the rate-limiting steps of pyrimidine and purine biosynthesis, the pro-viral MCL1 apoptosis regulator, BCL2 family member protein and the mitochondrial electron transport complex III, play critical roles in the completion of the mammarenavirus life cycle, suggesting they represent potential druggable targets to counter human pathogenic mammarenavirus infections.


Subject(s)
Antiviral Agents/pharmacology , Arenaviridae/drug effects , Databases, Pharmaceutical , Drug Evaluation, Preclinical/methods , Drug Repositioning/methods , A549 Cells , Animals , Apoptosis , Arenaviridae/physiology , Arenaviridae Infections/drug therapy , Arenaviridae Infections/immunology , Arenaviridae Infections/virology , Chlorocebus aethiops , Dose-Response Relationship, Drug , Electron Transport Complex III/metabolism , HEK293 Cells , Humans , Interferons/genetics , Junin virus/drug effects , Lassa virus/drug effects , Lymphocytic choriomeningitis virus/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Purines/biosynthesis , Pyrimidines/biosynthesis , Vero Cells , Virus Replication/drug effects
16.
J Virol ; 93(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31167906

ABSTRACT

The -2/-1 programmed ribosomal frameshifting (-2/-1 PRF) mechanism in porcine reproductive and respiratory syndrome virus (PRRSV) leads to the translation of two additional viral proteins, nonstructural protein 2TF (nsp2TF) and nsp2N. This -2/-1 PRF mechanism is transactivated by a viral protein, nsp1ß, and cellular poly(rC) binding proteins (PCBPs). Critical elements for -2/-1 PRF, including a slippery sequence and a downstream C-rich motif, were also identified in 11 simarteriviruses. However, the slippery sequences (XXXUCUCU instead of XXXUUUUU) in seven simarteriviruses can only facilitate -2 PRF to generate nsp2TF. The nsp1ß of simian hemorrhagic fever virus (SHFV) was identified as a key factor that transactivates both -2 and -1 PRF, and the universally conserved Tyr111 and Arg114 in nsp1ß are essential for this activity. In vitro translation experiments demonstrated the involvement of PCBPs in simarterivirus -2/-1 PRF. Using SHFV reverse genetics, we confirmed critical roles of nsp1ß, slippery sequence, and C-rich motif in -2/-1 PRF in SHFV-infected cells. Attenuated virus growth ability was observed in SHFV mutants with impaired expression of nsp2TF and nsp2N. Comparative genomic sequence analysis showed that key elements of -2/-1 PRF are highly conserved in all known arteriviruses except equine arteritis virus (EAV) and wobbly possum disease virus (WPDV). Furthermore, -2/-1 PRF with SHFV PRF signal RNA can be stimulated by heterotypic nsp1ßs of all non-EAV arteriviruses tested. Taken together, these data suggest that -2/-1 PRF is an evolutionarily conserved mechanism employed in non-EAV/-WPDV arteriviruses for the expression of additional viral proteins that are important for viral replication.IMPORTANCE Simarteriviruses are a group of arteriviruses infecting nonhuman primates, and a number of new species have been established in recent years. Although these arteriviruses are widely distributed among African nonhuman primates of different species, and some of them cause lethal hemorrhagic fever disease, this group of viruses has been undercharacterized. Since wild nonhuman primates are historically important sources or reservoirs of human pathogens, there is concern that simarteriviruses may be preemergent zoonotic pathogens. Thus, molecular characterization of simarteriviruses is becoming a priority in arterivirology. In this study, we demonstrated that an evolutionarily conserved ribosomal frameshifting mechanism is used by simarteriviruses and other distantly related arteriviruses for the expression of additional viral proteins. This mechanism is unprecedented in eukaryotic systems. Given the crucial role of ribosome function in all living systems, the potential impact of the in-depth characterization of this novel mechanism reaches beyond the field of virology.


Subject(s)
Biological Evolution , Frameshifting, Ribosomal , Porcine respiratory and reproductive syndrome virus/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Arterivirus/genetics , Cell Line , Gene Expression , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
17.
Front Microbiol ; 10: 856, 2019.
Article in English | MEDLINE | ID: mdl-31105663

ABSTRACT

In 2012, the genome of a novel rhabdovirus, Bas-Congo virus (BASV), was discovered in the acute-phase serum of a Congolese patient with presumed viral hemorrhagic fever. In the absence of a replicating virus isolate, fulfilling Koch's postulates to determine whether BASV is indeed a human virus and/or pathogen has been impossible. However, experiments with vesiculoviral particles pseudotyped with Bas-Congo glycoprotein suggested that BASV particles can enter cells from multiple animals, including humans. In 2015, genomes of two related viruses, Ekpoma virus 1 (EKV-1) and Ekpoma virus 2 (EKV-2), were detected in human sera in Nigeria. Isolates could not be obtained. Phylogenetic analyses led to the classification of BASV, EKV-1, and EKV-2 in the same genus, Tibrovirus, together with five biting midge-borne rhabdoviruses [i.e., Beatrice Hill virus (BHV), Bivens Arm virus (BAV), Coastal Plains virus (CPV), Sweetwater Branch virus (SWBV), and Tibrogargan virus (TIBV)] not known to infect humans. Using individual recombinant vesiculoviruses expressing the glycoproteins of all eight known tibroviruses and more than 75 cell lines representing different animal species, we demonstrate that the glycoproteins of all tibroviruses can mediate vesiculovirus particle entry into human, bat, nonhuman primate, cotton rat, boa constrictor, and Asian tiger mosquito cells. Using four of five isolated authentic tibroviruses (i.e., BAV, CPV, SWBV, and TIBV), our experiments indicate that many cell types may be partially resistant to tibrovirus replication after virion cell entry. Consequently, experimental data solely obtained from experiments using tibrovirus surrogate systems (e.g., vesiculoviral pseudotypes, recombinant vesiculoviruses) cannot be used to predict whether BASV, or any other tibrovirus, infects humans.

18.
J Infect Dis ; 219(11): 1818-1822, 2019 05 05.
Article in English | MEDLINE | ID: mdl-30517671

ABSTRACT

Lassa fever (LF) survivors develop various clinical manifestations including polyserositis, myalgia, epididymitis, and hearing loss weeks to months after recovery from acute infection. We demonstrate a systemic lymphoplasmacytic and histiocytic arteritis and periarteritis in guinea pigs more than 2 months after recovery from acute Lassa virus (LASV) infection. LASV was detected in the arterial tunica media smooth muscle cells by immunohistochemistry, in situ hybridization, and transmission electron microscopy. Our results suggest that the sequelae of LASV infection may be due to virus persistence resulting in systemic vascular damage. These findings shed light on the pathogenesis of LASV sequelae in convalescent human survivors.


Subject(s)
Lassa Fever/virology , Lassa virus/immunology , Animals , Convalescence , Disease Models, Animal , Disease Progression , Female , Guinea Pigs , Humans , Immunohistochemistry , Inflammation , Lassa Fever/pathology , Male
19.
Viruses ; 10(11)2018 11 20.
Article in English | MEDLINE | ID: mdl-30463334

ABSTRACT

Lassa virus (LASV), a mammarenavirus, infects an estimated 100,000⁻300,000 individuals yearly in western Africa and frequently causes lethal disease. Currently, no LASV-specific antivirals or vaccines are commercially available for prevention or treatment of Lassa fever, the disease caused by LASV. The development of medical countermeasure screening platforms is a crucial step to yield licensable products. Using reverse genetics, we generated a recombinant wild-type LASV (rLASV-WT) and a modified version thereof encoding a cleavable green fluorescent protein (GFP) as a reporter for rapid and quantitative detection of infection (rLASV-GFP). Both rLASV-WT and wild-type LASV exhibited similar growth kinetics in cultured cells, whereas growth of rLASV-GFP was slightly impaired. GFP reporter expression by rLASV-GFP remained stable over several serial passages in Vero cells. Using two well-characterized broad-spectrum antivirals known to inhibit LASV infection, favipiravir and ribavirin, we demonstrate that rLASV-GFP is a suitable screening tool for the identification of LASV infection inhibitors. Building on these findings, we established a rLASV-GFP-based high-throughput drug discovery screen and an rLASV-GFP-based antibody neutralization assay. Both platforms, now available as a standard tool at the IRF-Frederick (an international resource), will accelerate anti-LASV medical countermeasure discovery and reduce costs of antiviral screens in maximum containment laboratories.


Subject(s)
Drug Evaluation, Preclinical/methods , Genes, Reporter , Green Fluorescent Proteins/analysis , Lassa virus/growth & development , Luminescent Agents/analysis , Neutralization Tests/methods , Staining and Labeling/methods , Animals , Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , Chlorocebus aethiops , Fluorometry/methods , Genomic Instability , Green Fluorescent Proteins/genetics , Lassa virus/drug effects , Lassa virus/genetics , Lassa virus/immunology , Reverse Genetics , Ribavirin/pharmacology , Vero Cells
20.
Arch Virol ; 163(8): 2283-2294, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29637429

ABSTRACT

In 2018, the order Mononegavirales was expanded by inclusion of 1 new genus and 12 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.


Subject(s)
Mononegavirales/classification , Animals , Humans , Mononegavirales/genetics , Mononegavirales/isolation & purification , Mononegavirales Infections/veterinary , Mononegavirales Infections/virology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...