Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Toxins (Basel) ; 16(2)2024 02 17.
Article in English | MEDLINE | ID: mdl-38393187

ABSTRACT

Entomopathogenic nematodes from the genus Steinernema (Nematoda: Steinernematidae) are capable of causing the rapid killing of insect hosts, facilitated by their association with symbiotic Gram-negative bacteria in the genus Xenorhabdus (Enterobacterales: Morganellaceae), positioning them as interesting candidate tools for the control of insect pests. In spite of this, only a limited number of species from this bacterial genus have been identified from their nematode hosts and their insecticidal properties documented. This study aimed to perform the genome sequence analysis of fourteen Xenorhabdus strains that were isolated from Steinernema nematodes in Argentina. All of the strains were found to be able of killing 7th instar larvae of Galleria mellonella (L.) (Lepidoptera: Pyralidae). Their sequenced genomes harbour 110 putative insecticidal proteins including Tc, Txp, Mcf, Pra/Prb and App homologs, plus other virulence factors such as putative nematocidal proteins, chitinases and secondary metabolite gene clusters for the synthesis of different bioactive compounds. Maximum-likelihood phylogenetic analysis plus average nucleotide identity calculations strongly suggested that three strains should be considered novel species. The species name for strains PSL and Reich (same species according to % ANI) is proposed as Xenorhabdus littoralis sp. nov., whereas strain 12 is proposed as Xenorhabdus santafensis sp. nov. In this work, we present a dual insight into the biocidal potential and diversity of the Xenorhabdus genus, demonstrated by different numbers of putative insecticidal genes and biosynthetic gene clusters, along with a fresh exploration of the species within this genus.


Subject(s)
Moths , Nematoda , Xenorhabdus , Animals , Xenorhabdus/genetics , Phylogeny , Argentina , Nematoda/genetics , Moths/genetics , Sequence Analysis , Symbiosis
2.
Viruses ; 15(7)2023 07 10.
Article in English | MEDLINE | ID: mdl-37515212

ABSTRACT

Outbreaks of Anticarsia gemmatalis (Hübner, 1818) (Lepidoptera: Erebidae), a major pest of soybean, can be controlled below economic thresholds with methods that do not involve the application of synthetic insecticides. Formulations based on natural isolates of the Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) (Baculoviridae: Alphabaculovirus) played a significant role in integrated pest management programs in the early 2000s, but a new generation of chemical insecticides and transgenic soybean have displaced AgMNPV-based products over the past decade. However, the marked genotypic variability present among and within alphabaculovirus isolates suggests that highly insecticidal genotypic variants can be isolated and used to reduce virus production costs or overcome isolate-dependent host resistance. This study aimed to select novel variants of AgMNPV with suitable insecticidal traits that could complement the existing AgMNPV active ingredients. Three distinct AgMNPV isolates were compared using their restriction endonuclease profile and in terms of their occlusion body (OB) pathogenicity. One isolate was selected (AgABB51) from which eighteen genotypic variants were plaque purified and characterized in terms of their insecticidal properties. The five most pathogenic variants varied in OB pathogenicity, although none of them was faster-killing or had higher OB production characteristics than the wild-type isolate. We conclude that the AgABB51 wild-type isolates appear to be genotypically structured for fast speed of kill and high OB production, both of which would favor horizontal transmission. Interactions among the component variants are likely to influence this insecticidal phenotype.


Subject(s)
Insecticides , Moths , Nucleopolyhedroviruses , Animals , Nucleopolyhedroviruses/genetics , Phenotype , Larva
3.
Pest Manag Sci ; 79(11): 4274-4281, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37345565

ABSTRACT

BACKGROUND: Alphabaculoviruses are Lepidoptera-specific virulent pathogens that infect numerous pests, including the Spodoptera complex. Due to their low environmental persistence, the traditional use of Alphabaculoviruses as bioinsecticides consist in high-rate spray applications with repeated treatments. Several abiotic and biotic factors can foster its dispersion, promoting their persistence in the agroecosystem. Amongst biotic factors, predatory arthropods can disperse the viruses by excretion after preying on infected individuals. Therefore, this study focused on promoting predator's ingestion of nucleopolyhedrovirus (NPV)-treated diets, and the later exposition of the insect host to leaf surfaces contaminated with predator excreta. The virus-host-predator system studied was Spodoptera littoralis nucleopolyhedrovirus (SpliNPV), Spodoptera littoralis (Boisduval) and Nesidiocoris tenuis (Reuter). The infective potential of N. tenuis feces and the retention time of SpliNPV were assessed under laboratory conditions after feeding on treated diets (sucrose solution and Ephestia kuehniella eggs). RESULTS: Mortality of S. littoralis larvae was lower via N. tenuis excretion than in positive control (spray application) in the first infection cycle, together with a delay in host death. In the second infection cycle, both SpliNPV-treated diets triggered 100% mortality. Both diets allowed the transmission of SpliNPV, with a faster excretion via sucrose solution compared to E. kuehniella eggs. SpliNPV remained in N. tenuis digestive tract and was viable after excretion at least for 9 days for both diets. CONCLUSIONS: This study demonstrated the potential of the predator N. tenuis as inoculative agent of baculoviruses, representing a new alternative that, along with inundative applications, might contribute to improve pest management strategies. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Toxins (Basel) ; 15(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36977103

ABSTRACT

Aedes albopictus is a species of mosquito, originally from Southeast Asia, that belongs to the Culicidae family and the Dipteran insect order. The distribution of this vector has rapidly changed over the past decade, making most of the temperate territories in the world vulnerable to important human vector-borne diseases such as dengue, yellow fever, zika or chikungunya. Bacillus thuringiensis var. israeliensis (Bti)-based insecticides represent a realistic alternative to the most common synthetic insecticides for the control of mosquito larvae. However, several studies have revealed emerging resistances to the major Bti Crystal proteins such as Cry4Aa, Cry4Ba and Cry11Aa, making the finding of new toxins necessary to diminish the exposure to the same toxicity factors overtime. Here, we characterized the individual activity of Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa against A. albopictus and found a new protein, Cyt1A-like, that increases the activity of Cry11Aa more than 20-fold. Additionally, we demonstrated that Cyt1A-like facilitates the activity three new Bti toxins: Cry53-like, Cry56A-like and Tpp36-like. All in all, these results provide alternatives to the currently available Bti products for the control of mosquito populations and position Cyt proteins as enablers of activity for otherwise non-active crystal proteins.


Subject(s)
Aedes , Bacillus thuringiensis , Insecticides , Zika Virus Infection , Zika Virus , Animals , Humans , Bacillus thuringiensis/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Aedes/metabolism , Bacterial Proteins/toxicity , Bacterial Proteins/metabolism , Mosquito Vectors , Endotoxins/toxicity , Endotoxins/metabolism , Larva/metabolism , Hemolysin Proteins/toxicity , Hemolysin Proteins/metabolism
5.
Microbiol Res ; 270: 127334, 2023 May.
Article in English | MEDLINE | ID: mdl-36804128

ABSTRACT

Cotton leaf worm (Spodoptera littoralis) is a pest that produces important losses in horticultural and ornamental crops in greenhouse, being classified as quarantine pest A2 by EPPO. One of the strategies proposed to control agricultural pests in a health and environmentally friendly way is biological control with entomopathogenic fungi. The genus of filamentous fungi Trichoderma includes different species with direct (infection, antibiosis, anti-feeding, etc.) and indirect (systemic activation of plant defenses) insecticidal capacity, however, the species T. hamatum has never been described previously as entomopathogenic. In this work, the entomopathogenic capacity of T. hamatum on S. littoralis L3 larvae was analyzed by applying spores and fungal filtrates (topically and orally). Infection by spores was compared with the commercial entomopathogenic fungus Beauveria bassiana, obtaining similar results with respect to the production of larval mortality. Oral application of spores reported high mortality and fungal colonization of larvae, however, T. hamatum did not show chitinase activity when grown in the presence of S. littoralis tissues. Therefore, infection of S. littoralis larvae by T. hamatum is through natural openings such as mouth, anus or spiracles. With respect to the application of filtrates, only those obtained from the liquid culture of T. hamatum in contact with S. littoralis tissues reported a significant reduction in larval growth. Metabolomic analysis of the filtrates determined that the filtrate with insecticidal capacity presented the siderophore rhizoferrin in large quantities, which could be responsible for this activity. However, the production of this siderophore had never been previously described in Trichoderma and its insecticidal capacity was unknown. In conclusion, T. hamatum presents entomopathogenic capacity against S. littoralis larvae through the application of spores and filtrates, and both ways could be the basis for the development of efficient bioinsecticides against the pest.


Subject(s)
Hypocreales , Insecticides , Animals , Pest Control, Biological/methods , Spodoptera/physiology , Siderophores , Larva/microbiology , Gossypium
6.
Toxins (Basel) ; 14(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36356018

ABSTRACT

Chemical products still represent the most common form of controlling crop pests and diseases. However, their extensive use has led to the selection of resistances. This makes the finding of new solutions paramount to countering the economic losses that pests and diseases represent in modern agriculture. Bacillus thuringiensis (Bt) is one of the most reliable alternatives to chemical-based solutions. In this study, we aimed to further expand the global applicability of Bt strains beyond their spores and crystals. To this end, we selected a new Bt strain (BST-122) with relevant toxicity factors and tested its activity against species belonging to different phyla. The spore and crystal mixture showed toxicity to coleopterans. Additionally, a novel Cry5-like protein proved active against the two-spotted spider mite. In vivo and plant assays revealed significant control of the parasitic nematode, Meloidogyne incognita. Surprisingly, our data indicated that the nematocidal determinants may be secreted. When evaluated against phytopathogenic fungi, the strain seemed to decelerate their growth. Overall, our research has highlighted the potential of Bt strains, expanding their use beyond the confinements of spores and crystals. However, further studies are required to pinpoint the factors responsible for the wide host range properties of the BST-122 strain.


Subject(s)
Bacillus thuringiensis , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins , Hemolysin Proteins/metabolism , Endotoxins/metabolism , Bacterial Proteins/metabolism
7.
Viruses ; 14(4)2022 03 26.
Article in English | MEDLINE | ID: mdl-35458418

ABSTRACT

Helicoverpa armigera single nucleopolyhedrovirus (HearSNPV) is a virulent pathogen of lepidopterans in the genera Heliothis and Helicoverpa, whereas Helicoverpa armigera multiple nucleopolyhedrovirus (HearSNPV) is a different virus species with a broader host range. This study aimed to examine the consequences of coocclusion of HearSNPV and HearMNPV on the pathogenicity, stability and host range of mixed-virus occlusion bodies (OBs). HearSNPV OBs were approximately 6-fold more pathogenic than HearMNPV OBs, showed faster killing by approximately 13 h, and were approximately 45% more productive in terms of OB production per larva. For coocclusion, H. armigera larvae were first inoculated with HearMNPV OBs and subsequently inoculated with HearSNPV OBs at intervals of 0-72 h after the initial inoculation. When the interval between inoculations was 12-24 h, OBs collected from virus-killed insects were found to comprise 41-57% of HearSNPV genomes, but the prevalence of HearSNPV genomes was greatly reduced (3-4%) at later time points. Quantitative PCR (qPCR) analysis revealed the presence of HearSNPV genomes in a small fraction of multinucleocapsid ODVs representing 0.47-0.88% of the genomes quantified in ODV samples, indicating that both viruses had replicated in coinfected host cells. End-point dilution assays on ODVs from cooccluded mixed-virus OBs confirmed the presence of both viruses in 41.9-55.6% of wells that were predicted to have been infected by a single ODV. A control experiment indicated that this result was unlikely to be due to the adhesion of HearSNPV ODVs to HearMNPV ODVs or accidental contamination during ODV band extraction. Therefore, the disparity between the qPCR and end-point dilution estimates of the prevalence of mixed-virus ODVs likely reflected virus-specific differences in replication efficiency in cell culture and the higher infectivity of pseudotyped ODVs that were produced in coinfected parental cells. Bioassays on H. armigera, Spodoptera frugiperda and Mamestra brassicae larvae revealed that mixed-virus OBs were capable of infecting heterologous hosts, but relative potency values largely reflected the proportion of HearMNPV present in each mixed-virus preparation. The cooccluded mixtures were unstable in serial passage; HearSNPV rapidly dominated during passage in H. armigera whereas HearMNPV rapidly dominated during passage in the heterologous hosts. We conclude that mixed-virus coocclusion technology may be useful for producing precise mixtures of viruses with host range properties suitable for the control of complexes of lepidopteran pests in particular crops, although this requires validation by field testing.


Subject(s)
Moths , Nucleopolyhedroviruses , Animals , Larva , Virulence
8.
Viruses ; 13(10)2021 09 22.
Article in English | MEDLINE | ID: mdl-34696324

ABSTRACT

The mechanisms generating variability in viruses are diverse. Variability allows baculoviruses to evolve with their host and with changes in their environment. We examined the role of one genetic variant of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) and its contribution to the variability of the virus under laboratory conditions. A mixture of natural isolates (ChinNPV-Mex1) contained two genetic variants that dominated over other variants in individual larvae that consumed high (ChinNPV-K) and low (ChinNPV-E) concentrations of inoculum. Studies on the ChinNPV-K variant indicated that it was capable of generating novel variation in a concentration-dependent manner. In cell culture, cells inoculated with high concentrations of ChinNPV-K produced OBs with the ChinNPV-K REN profile, whereas a high diversity of ChinNPV variants was recovered following plaque purification of low concentrations of ChinNPV-K virion inoculum. Interestingly, the ChinNPV-K variant could not be recovered from plaques derived from low concentration inocula originating from budded virions or occlusion-derived virions of ChinNPV-K. Genome sequencing revealed marked differences between ChinNPV-K and ChinNPV-E, with high variation in the ChinNPV-K genome, mostly due to single nucleotide polymorphisms. We conclude that ChinNPV-K is an unstable genetic variant that is responsible for generating much of the detected variability in the natural ChinNPV isolates used in this study.


Subject(s)
Genetic Variation , Nucleopolyhedroviruses/genetics , Animals , Larva/virology , Moths/virology , Nucleopolyhedroviruses/classification , Pest Control, Biological , Phylogeny , Polymorphism, Single Nucleotide , Virion
9.
Viruses ; 13(7)2021 06 25.
Article in English | MEDLINE | ID: mdl-34202228

ABSTRACT

Enhancins are metalloproteinases that facilitate baculovirus infection in the insect midgut. They are more prevalent in granuloviruses (GVs), constituting up to 5% of the proteins of viral occlusion bodies (OBs). In nucleopolyhedroviruses (NPVs), in contrast, they are present in the envelope of the occlusion-derived virions (ODV). In the present study, we constructed a recombinant Autographa californica NPV (AcMNPV) that expressed the Trichoplusia ni GV (TnGV) enhancin 3 (En3), with the aim of increasing the presence of enhancin in the OBs or ODVs. En3 was successfully produced but did not localize to the OBs or the ODVs and accumulated in the soluble fraction of infected cells. As a result, increased OB pathogenicity was observed when OBs were administered in mixtures with the soluble fraction of infected cells. The mixture of OBs and the soluble fraction of Sf9 cells infected with BacPhEn3 recombinant virus was ~3- and ~4.7-fold more pathogenic than BacPh control OBs in the second and fourth instars of Spodoptera exigua, respectively. In contrast, when purified, recombinant BacPhEn3 OBs were as pathogenic as control BacPh OBs. The expression of En3 in the soluble fraction of insect cells may find applications in the development of virus-based insecticides with increased efficacy.


Subject(s)
Genetic Vectors/genetics , Granulovirus/genetics , Granulovirus/pathogenicity , Viral Proteins/genetics , Viral Proteins/metabolism , Animals , Larva/virology , Metalloproteases , Moths/cytology , Moths/virology , Occlusion Bodies, Viral , Sf9 Cells , Spodoptera/virology
10.
Appl Environ Microbiol ; 87(3)2021 01 15.
Article in English | MEDLINE | ID: mdl-33187994

ABSTRACT

Alphabaculoviruses (Baculoviridae) are pathogenic DNA viruses of Lepidoptera that have applications as the basis for biological insecticides and expression vectors in biotechnological processes. These viruses have a characteristic physical structure that facilitates the transmission of groups of genomes. We demonstrate that coinfection of a susceptible insect by two different alphabaculovirus species results in the production of mixed-virus occlusion bodies containing the parental viruses. This occurred between closely related and phylogenetically more distant alphabaculoviruses. Approximately half the virions present in proteinaceous viral occlusion bodies produced following coinfection of insects with a mixture of two alphabaculoviruses contained both viruses, indicating that the viruses coinfected and replicated in a single cell and were coenveloped within the same virion. This observation was confirmed by endpoint dilution assay. Moreover, both viruses persisted in the mixed-virus population by coinfection of insects during several rounds of insect-to-insect transmission. Coinfection by viruses that differed in genome size had unexpected results on the length of viral nucleocapsids, which differed from those of both parental viruses. These results have unique implications for the development of alphabaculoviruses as biological control agents of insect pests.IMPORTANCE Alphabaculoviruses are used as biological insecticides and expression vectors in biotechnology and medical applications. We demonstrate that in caterpillars infected with particular mixtures of viruses, the genomes of different baculovirus species can be enveloped together within individual virions and occluded within proteinaceous occlusion bodies. This results in the transmission of mixed-virus populations to the caterpillar stages of moth species. Once established, mixed-virus populations persist by coinfection of insect cells during several rounds of insect-to-insect transmission. Mixed-virus production technology opens the way to the development of custom-designed insecticides for control of different combinations of caterpillar pest species.


Subject(s)
Biological Control Agents , Insecticides , Larva/virology , Nucleopolyhedroviruses , Spodoptera/virology , Animals , Virion
11.
Front Microbiol ; 12: 810026, 2021.
Article in English | MEDLINE | ID: mdl-35145496

ABSTRACT

Nucleopolyhedroviruses (NPV, Baculoviridae) that infect lepidopteran pests have an established record as safe and effective biological insecticides. Here, we describe a new approach for the development of NPV-based insecticides. This technology takes advantage of the unique way in which these viruses are transmitted as collective infectious units, and the genotypic diversity present in natural virus populations. A ten-step procedure is described involving genotypic variant selection, mixing, coinfection and intraspecific coocclusion of variants within viral occlusion bodies. Using two examples, we demonstrate how this approach can be used to produce highly pathogenic virus preparations for pest control. As restricted host range limits the uptake of NPV-based insecticides, this technology has recently been adapted to produce custom-designed interspecific mixtures of viruses that can be applied to control complexes of lepidopteran pests on particular crops, as long as a shared host species is available for virus production. This approach to the development of NPV-based insecticides has the potential to be applied across a broad range of NPV-pest pathosystems.

12.
Toxins (Basel) ; 12(12)2020 12 05.
Article in English | MEDLINE | ID: mdl-33291447

ABSTRACT

The control of dipteran pests is highly relevant to humans due to their involvement in the transmission of serious diseases including malaria, dengue fever, Chikungunya, yellow fever, zika, and filariasis; as well as their agronomic impact on numerous crops. Many bacteria are able to produce proteins that are active against insect species. These bacteria include Bacillus thuringiensis, the most widely-studied pesticidal bacterium, which synthesizes proteins that accumulate in crystals with insecticidal properties and which has been widely used in the biological control of insects from different orders, including Lepidoptera, Coleoptera, and Diptera. In this review, we summarize all the bacterial proteins, from B. thuringiensis and other entomopathogenic bacteria, which have described insecticidal activity against dipteran pests, including species of medical and agronomic importance.


Subject(s)
Bacillus thuringiensis , Bacterial Toxins/toxicity , Biological Control Agents/toxicity , Diptera/drug effects , Insecticides/toxicity , Agriculture , Animals , Pest Control, Biological
13.
Insects ; 11(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167386

ABSTRACT

Baculoviruses (BV) are highly effective against lepidopteran pests of economic importance such as Spodoptera exigua. The combined use of entomopathogens and macrobiological control agents requires the study of their relationships. Laboratory bioassays were developed to evaluate the interactions between the multiple nucleopolyhedroviruses of S. exigua (SeMNPV) and Autographa californica (AcMNPV), and the predator Chrysoperla carnea. The microscopic examination of predator's excreta (larval drops and meconia) after the ingestion of BV-infected S. exigua revealed the presence of viral occlusion bodies (OBs). The reinfection of S. exigua larvae with BVs-contaminated excreta by using OBs water suspensions or by direct application both yielded high mortality values but different speed-of-kill results. Meconia killed before in suspensions due to their higher viral load and larval excretion drops did so in direct application due to their liquid nature and their easiness of consumption. The prey-mediated ingestion of SeMNPV and AcMNPV triggered slight effects in C. carnea, which were probably derived from the food nutritional quality. Chrysoperla carnea larvae did not discriminate between healthy and BV-infected S. exigua, while a preference was shown for S. exigua (healthy or infected) vs. Macrosiphum euphorbiae. Our findings present C. carnea, and particularly its larvae, as a promissory candidate for BV dispersion in the field.

14.
Toxins (Basel) ; 12(9)2020 08 22.
Article in English | MEDLINE | ID: mdl-32842608

ABSTRACT

The mode of action underlying the insecticidal activity of the Bacillus thuringiensis (Bt) binary pesticidal protein Vpb/Vpa (formerly Vip1/Vip2) is uncertain. In this study, three recombinant baculoviruses were constructed using Bac-to-Bac technology to express Vpa2Ac1 and two novel Vpa2-like genes, Vpa2-like1 and Vpa2-like2, under the baculovirus p10 promoter in transfected Sf9 cells. Pairwise amino acid analyses revealed a higher percentage of identity and a lower number of gaps between Vpa2Ac1 and Vpa2-like2 than to Vpa2-like1. Moreover, Vpa2-like1 lacked the conserved Ser-Thr-Ser motif, involved in NAD binding, and the (F/Y)xx(Q/E)xE consensus sequence, characteristic of the ARTT toxin family involved in actin polymerization. Vpa2Ac1, Vpa2-like1 and Vpa2-like2 transcripts and proteins were detected in Sf9 culture cells, but the signals of Vpa2Ac1 and Vpa2-like2 were weak and decreased over time. Sf9 cells infected by a recombinant bacmid expressing Vpa2-like1 showed typical circular morphology and produced viral occlusion bodies (OBs) at the same level as the control virus. However, expression of Vpa2Ac1 and Vpa2-like2 induced cell polarization, similar to that produced by the microfilament-destabilizing agent cytochalasin D and OBs were not produced. The presence of filament disrupting agents, such as nicotinamide and nocodazole, during transfection prevented cell polarization and OB production was observed. We conclude that Vpa2Ac1 and Vpa2-like2 proteins likely possess ADP-ribosyltransferase activity that modulated actin polarization, whereas Vpa2-like1 is not a typical Vpa2 protein. Vpa2-like2 has now been designated Vpa2Ca1 (accession number AAO86513) by the Bacillus thuringiensis delta-endotoxin nomenclature committee.


Subject(s)
Bacillus thuringiensis/metabolism , Bacterial Proteins/biosynthesis , Baculoviridae/metabolism , Gene Expression Regulation, Viral/physiology , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Baculoviridae/genetics , Biological Control Agents/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Sf9 Cells
15.
Toxins (Basel) ; 12(7)2020 06 29.
Article in English | MEDLINE | ID: mdl-32610662

ABSTRACT

Bacillus thuringiensis is the most successful microbial insecticide agent and its proteins have been studied for many years due to its toxicity against insects mainly belonging to the orders Lepidoptera, Diptera and Coleoptera, which are pests of agro-forestry and medical-veterinary interest. However, studies on the interactions between this bacterium and the insect species classified in the order Coleoptera are more limited when compared to other insect orders. To date, 45 Cry proteins, 2 Cyt proteins, 11 Vip proteins, and 2 Sip proteins have been reported with activity against coleopteran species. A number of these proteins have been successfully used in some insecticidal formulations and in the construction of transgenic crops to provide protection against main beetle pests. In this review, we provide an update on the activity of Bt toxins against coleopteran insects, as well as specific information about the structure and mode of action of coleopteran Bt proteins.


Subject(s)
Bacillus thuringiensis Toxins/metabolism , Bacillus thuringiensis/metabolism , Biological Control Agents , Coleoptera/growth & development , Crops, Agricultural/parasitology , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Pest Control, Biological , Plants, Genetically Modified/parasitology , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins/genetics , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Endotoxins/genetics , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
16.
Toxins (Basel) ; 12(6)2020 05 29.
Article in English | MEDLINE | ID: mdl-32485828

ABSTRACT

Bacillus thuringiensis ser. israelensis (Bti) has been widely used as microbial larvicide for the control of many species of mosquitoes and blackflies. The larvicidal activity of Bti resides in Cry and Cyt δ-endotoxins present in the parasporal crystal of this pathogen. The insecticidal activity of the crystal is higher than the activities of the individual toxins, which is likely due to synergistic interactions among the crystal component proteins, particularly those involving Cyt1Aa. In the present study, Cry10Aa and Cyt2Ba were cloned from the commercial larvicide VectoBac-12AS® and expressed in the acrystalliferous Bt strain BMB171 under the cyt1Aa strong promoter of the pSTAB vector. The LC50 values for Aedes aegypti second instar larvae estimated at 24 hpi for these two recombinant proteins (Cry10Aa and Cyt2Ba) were 299.62 and 279.37 ng/mL, respectively. Remarkable synergistic mosquitocidal activity was observed between Cry10Aa and Cyt2Ba (synergistic potentiation of 68.6-fold) when spore + crystal preparations, comprising a mixture of both recombinant strains in equal relative concentrations, were ingested by A. aegypti larvae. This synergistic activity is among the most powerful described so far with Bt toxins and is comparable to that reported for Cyt1A when interacting with Cry4Aa, Cry4Ba or Cry11Aa. Synergistic mosquitocidal activity was also observed between the recombinant proteins Cyt2Ba and Cry4Aa, but in this case, the synergistic potentiation was 4.6-fold. In conclusion, although Cry10Aa and Cyt2Ba are rarely detectable or appear as minor components in the crystals of Bti strains, they represent toxicity factors with a high potential for the control of mosquito populations.


Subject(s)
Aedes/embryology , Bacillus thuringiensis Toxins/metabolism , Bacillus thuringiensis/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecticides/metabolism , Mosquito Control , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Larva
17.
Insects ; 11(5)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443780

ABSTRACT

The joint use of baculoviruses and synthetic insecticides for integrated pest management requires the study of the additive, synergistic or antagonistic effects among them on pest mortality. Droplet bioassays were conducted with Autographa californica multiple nucleopolyhedrovirus (AcMNPV), Spodoptera littoralis nucleopolyhedrovirus (SpliNPV) and seven insecticides (azadirachtin, Bacillus thuringiensis, cyantraniliprole, emamectin, metaflumizone, methoxyfenozide and spinetoram) on Spodoptera exigua and Spodoptera littoralis. The lethal concentrations LC50 and LC95 were calculated through probit regressions. Then, the sequential feeding of insecticides and nucleopolyhedroviruses was studied. Larvae were provided with the LC50 of one insecticide, followed by the LC50 of one nucleopolyhedrovirus 24 h later. The inverse order was also conducted. The insecticide LC50 and LC95 were higher for S. littoralis than for S. exigua. AcMNPV showed greater toxicity on S. exigua than SpliNPV on S. littoralis. Emamectin showed synergy with AcMNPV when the chemical was applied first, and metaflumizone and AcMNPV were synergistic regardless of the order of application, both from the first day of evaluation. SpliNPV was synergistic with azadirachtin and emamectin when it was applied first, but synergy was reached after 12-13 days. Excellent control is possible with the LC50 of azadirachtin, emamectin and metaflumizone in combination with nucleopolyhedroviruses, and merits further study as a means of controlling lepidopteran pests.

18.
Viruses ; 12(5)2020 05 05.
Article in English | MEDLINE | ID: mdl-32380682

ABSTRACT

Naturally occurring covert infections in lepidopteran populations can involve multiple viruses with potentially different transmission strategies. In this study, we characterized covert infection by two RNA viruses, Spodoptera exigua iflavirus 1 (SeIV-1) and Spodoptera exigua iflavirus 2 (SeIV-2) (family Iflaviridae) that naturally infect populations of Spodoptera exigua, and examined their influence on susceptibility to patent disease by the nucleopolyhedrovirus Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) (family Baculoviridae). The abundance of SeIV-1 genomes increased up to ten-thousand-fold across insect developmental stages after surface contamination of host eggs with a mixture of SeIV-1 and SeIV-2 particles, whereas the abundance of SeIV-2 remained constant across all developmental stages. Low levels of SeIV-2 infection were detected in all groups of insects, including those that hatched from surface-decontaminated egg masses. SeIV-1 infection resulted in reduced larval weight gain, and an unbalanced sex ratio, whereas larval developmental time, pupal weight, and adult emergence and fecundity were not significantly affected in infected adults. The inoculation of S. exigua egg masses with iflavirus, followed by a subsequent infection with SeMNPV, resulted in an additive effect on larval mortality. The 50% lethal concentration (LC50) of SeMNPV was reduced nearly 4-fold and the mean time to death was faster by 12 h in iflavirus-treated insects. These results suggest that inapparent iflavirus infections may be able to modulate the host response to a new pathogen, a finding that has particular relevance to the use of SeMNPV as the basis for biological pest control products.


Subject(s)
Nucleopolyhedroviruses/physiology , Picornaviridae/physiology , Spodoptera/virology , Animals , Genome, Viral , Larva/growth & development , Larva/virology , Nucleopolyhedroviruses/genetics , Pest Control, Biological , Picornaviridae/genetics , Pupa/growth & development , Pupa/virology , Spodoptera/growth & development
19.
Appl Environ Microbiol ; 86(12)2020 06 02.
Article in English | MEDLINE | ID: mdl-32276971

ABSTRACT

Bacillus thuringiensis (Bt) is the most widely used active ingredient for biological insecticides. The composition of δ-endotoxins (Cry and Cyt proteins) in the parasporal crystal determines the toxicity profile of each Bt strain. However, a reliable method for their identification and quantification has not been available, due to the high sequence identity of the genes that encode the δ-endotoxins and the toxins themselves. Here, we have developed an accurate and reproducible mass spectrometry-based method (liquid chromatography-tandem mass spectrometry-multiple reaction monitoring [LC-MS/MS-MRM]) using isotopically labeled proteotypic peptides for each protein in a particular mixture to determine the relative proportion of each δ-endotoxin within the crystal. To validate the method, artificial mixtures containing Cry1Aa, Cry2Aa, and Cry6Aa were analyzed. Determination of the relative abundance of proteins (in molarity) with our method was in good agreement with the expected values. This method was then applied to the most common commercial Bt-based products, DiPel DF, XenTari GD, VectoBac 12S, and Novodor, in which between three and six δ-endotoxins were identified and quantified in each product. This novel approach is of great value for the characterization of Bt-based products, not only providing information on host range, but also for monitoring industrial crystal production and quality control and product registration for Bt-based insecticides.IMPORTANCEBacillus thuringiensis (Bt)-based biological insecticides are used extensively to control insect pests and vectors of human diseases. Bt-based products provide greater specificity and biosafety than broad-spectrum synthetic insecticides. The biological activity of this bacterium resides in spores and crystals comprising complex mixtures of toxic proteins. We developed and validated a fast, accurate, and reproducible method for quantitative determination of the crystal components of Bt-based products. This method will find clear applications in the improvement of various aspects of the industrial production process of Bt. An important aspect of the production of Bt-based insecticides is its quality control. By specifically quantifying the relative proportion of each of the toxins that make up the crystal, our method represents the most consistent and repeatable evaluation procedure in the quality control of different batches produced in successive fermentations. This method can also contribute to the design of specific culture media and fermentation conditions that optimize Bt crystal composition across a range of Bt strains that target different pestiferous insects. Quantitative information on crystal composition should also prove valuable to phytosanitary product registration authorities that oversee the safety and efficacy of crop protection products.


Subject(s)
Bacillus thuringiensis/chemistry , Bacterial Proteins/isolation & purification , Chromatography, Liquid/methods , Endotoxins/isolation & purification , Hemolysin Proteins/isolation & purification , Insecticides/isolation & purification , Proteomics/methods , Tandem Mass Spectrometry/methods , Bacillus thuringiensis Toxins , Bacterial Proteins/chemistry , Endotoxins/chemistry , Hemolysin Proteins/chemistry , Insecticides/chemistry , Proteome/chemistry
20.
Toxins (Basel) ; 12(2)2020 02 21.
Article in English | MEDLINE | ID: mdl-32098045

ABSTRACT

Bacillus thuringiensis (Bt) produces insecticidal proteins that are either secreted during the vegetative growth phase or accumulated in the crystal inclusions (Cry proteins) in the stationary phase. Cry1I proteins share the three domain (3D) structure typical of crystal proteins but are secreted to the media early in the stationary growth phase. In the generally accepted mode of action of 3D Cry proteins (sequential binding model), the formation of an oligomer (tetramer) has been described as a major step, necessary for pore formation and subsequent toxicity. To know if this could be extended to Cry1I proteins, the formation of Cry1Ia oligomers was studied by Western blot, after the incubation of trypsin activated Cry1Ia with insect brush border membrane vesicles (BBMV) or insect cultured cells, using Cry1Ab as control. Our results showed that Cry1Ia oligomers were observed only after incubation with susceptible coleopteran BBMV, but not following incubation with susceptible lepidopteran BBMV or non-susceptible Sf21 insect cells, while Cry1Ab oligomers were persistently detected after incubation with all insect tissues tested, regardless of its host susceptibility. The data suggested oligomerization may not necessarily be a requirement for the toxicity of Cry1I proteins.


Subject(s)
Bacillus thuringiensis Toxins/metabolism , Bacillus thuringiensis/metabolism , Coleoptera/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Lepidoptera/metabolism , Membrane Proteins/metabolism , Microvilli/metabolism , Protein Multimerization , Animals , Bacillus thuringiensis Toxins/genetics , Binding Sites , Endotoxins/genetics , Hemolysin Proteins/genetics , Protein Binding , Sf9 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...