Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Med Chem ; 90: 117366, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37329676

ABSTRACT

Hura crepitans L. (Euphorbiaceae) is a thorn-covered tree widespread in South America, Africa and Asia which produces an irritating milky latex containing numerous secondary metabolites, notably daphnane-type diterpenes known as Protein Kinase C activators. Fractionation of a dichloromethane extract of the latex led to the isolation of five new daphnane diterpenes (1-5), along with two known analogs (6-7) including huratoxin. Huratoxin (6) and 4',5'-epoxyhuratoxin (4) were found to exhibit significant and selective cell growth inhibition against colorectal cancer cell line Caco-2 and primary colorectal cancer cells cultured as colonoids. The underlying mechanism of 4 and 6 was further investigated revealing the involvement of PKCζ in the cytostatic activity.


Subject(s)
Colorectal Neoplasms , Diterpenes , Euphorbiaceae , Humans , Latex , Caco-2 Cells , Diterpenes/pharmacology , Colorectal Neoplasms/drug therapy
2.
Phytochem Anal ; 29(6): 627-638, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30019471

ABSTRACT

INTRODUCTION: The phytochemistry of the latex of Hura crepitans L. (Euphorbiaceae), a widespread tree in the Amazonian forest having many uses, is little known. Only huratoxin, a daphnane diterpene orthoester, has been described despite the high pharmacological potential of this kind of compounds. Glucosphingolipids (cerebrosides) are also known to be distributed in Euphorbiaceae latexes. OBJECTIVE: To tentatively identify daphnanes diterpenes and cerebrosides in the latex of H. crepitans. METHODS: An ethanolic extract of the lyophilised latex of H. crepitans was analysed by ultra-high-performance liquid chromatography (UHPLC) coupled with positive and negative atmospheric pressure chemical ionisation high-resolution mass spectrometry (APCI-HRMS) method using a quadrupole/linear ion trap/Orbitrap (LTQ-Orbitrap). Tandem mass spectrometry (MS/MS) spectra were recorded by two different fragmentation modes: collision induced dissociation (CID) and higher-energy collisional dissociation (HCD). RESULTS: The analysis of CID- and HCD-MS/MS spectra allowed to propose fragmentation patterns for daphnane esters and cerebrosides and highlight diagnostic ions in positive and negative ion modes. A total of 34 compounds including 24 daphnane esters and 10 cerebrosides have been tentatively annotated. Among them, 17 daphnane diterpenes bearing one or two acyl chains are new compounds and the cerebrosides are described in the genus Hura for the first time. CONCLUSION: This study revealed the chemical constituents of the latex of H. crepitans and particularly its richness and chemical diversity in daphnane diterpenes, more frequently encountered in the species of Thymelaeaceae.


Subject(s)
Chromatography, Liquid/methods , Euphorbiaceae/chemistry , Latex/chemistry , Mass Spectrometry/methods , Molecular Structure , Plant Extracts/chemistry , Toxins, Biological/chemistry
3.
Rapid Commun Mass Spectrom ; 30(5): 569-80, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26842579

ABSTRACT

RATIONALE: Hirsutinolide-type sesquiterpene lactones (SLs) are natural biologically active compounds mainly found in the genus Vernonia. Very few studies have been published about the fragmentation mechanisms of SLs generally and none about hirsutinolides, although they have drawn attention through their biological and taxonomical interest. This work aims to propose a mass spectrometry fragmentation pattern for hirsutinolides in order to detect and to identify them in a botanical extract. METHODS: The fragmentation pathways of six pure hirsutinolides isolated from Pseudelephantopus spiralis were established by positive ion electrospray high-resolution linear ion trap Orbitrap tandem mass spectrometry (ESI(+)-HRMS(n) ). A resolutive, hyphenated ultra-high-performance liquid chromatography (UHPLC) coupled to diode array detection (DAD) and ESI(+)-HRMS(n) method was then implemented to separate and analyze them. The ionization behaviour and diagnostic product ions were investigated by both methods. The UHPLC/DAD-ESI-HRMS(n) method was applied for the dereplication of a plant extract. RESULTS: For the six standard compounds, the main fragmentation pattern consists first in the loss of the side chain in the C-8 position followed by the loss of the substituent in the C-13 position. UHPLC/HRMS analyses of hirsutinolides mainly produced sodiated molecules or [M+H-H2 O](+) ions. The high-abundance product ions at m/z 299 and 259 were established to be the characteristic diagnostic ions of the hirsutinolide core. The analysis of a P. spiralis extract further led to the identification of two putative hirsutinolides. CONCLUSIONS: The UHPLC/DAD-HRMS(n) method combining characteristic fragmentation patterns and the profiles of the product ions generated in the MS and MS/MS spectra is an effective technique for characterizing hirsutinolide-type SLs.


Subject(s)
Asteraceae/chemistry , Lactones/chemistry , Plant Components, Aerial/chemistry , Sesquiterpenes/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods , Lactones/isolation & purification , Sesquiterpenes/isolation & purification
4.
J Ethnopharmacol ; 157: 149-55, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25251262

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Leaves and rhizomes of Renealmia thyrsoidea (Ruiz & Pav.) Poepp. & Endl. traditionally used in the Yanesha pharmacopoeia to treat skin infections such as leishmaniasis ulcers, or to reduce fever were chemically investigated to identify leishmanicidal compounds, as well as PPARγ activators. METHODS: Compounds were isolated through a bioassay-guided fractionation and their structures were determined via detailed spectral analysis. The viability of Leishmania amazonensis axenic amastigotes was assessed by the reduction of tetrazolium salt (MTT), the cytotoxicity on macrophage was evaluated using trypan blue dye exclusion method, while the percentage of infected macrophages was determined microscopically in the intracellular macrophage-infected assay. The CD36, mannose receptor (MR) and dectin-1 mRNA expression on human monocytes-derived macrophages was evaluated by quantitative real-time PCR. RESULTS: Six sesquiterpenes (1-6), one dihydrobenzofuranone (7) and four flavonoids (8-11) were isolated from the leaves. Alongside, two flavonoids (12-13) and five diarylheptanoids (14-18) were identified in the rhizomes. Leishmanicidal activity against Leishmania amazonensis axenic amastigotes was evaluated for all compounds. Compounds 6, 7, and 11, isolated from the leaves, showed to be the most active derivatives. Diarylheptanoids 14-18 were also screened for their ability to activate PPARγ nuclear receptor in macrophages. Compounds 17 and 18 bearing a Michael acceptor moiety strongly increased the expression of PPARγ target genes such as CD36, Dectin-1 and mannose receptor (MR), thus revealing interesting immunomodulatory properties. CONCLUSIONS: Phytochemical investigation of Renealmia thyrsoidea has led to the isolation of leishmanicidal compounds from the leaves and potent PPARγ activators from the rhizomes. These results are in agreement with the traditional uses of the different parts of Renealmia thyrsoidea.


Subject(s)
Leishmania mexicana/drug effects , PPAR gamma/drug effects , Plant Extracts/pharmacology , Zingiberaceae/chemistry , Animals , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Humans , Macrophages/drug effects , Male , Medicine, Traditional , Mice , Mice, Inbred BALB C , PPAR gamma/metabolism , Plant Leaves , Real-Time Polymerase Chain Reaction , Rhizome
5.
Planta Med ; 78(9): 914-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22516933

ABSTRACT

Two new dihydrochalcones (1, 2), as well as eight known compounds, piperaduncin C (3), 2',6'-dihydroxy-4'-methoxydihydrochalcone (4), 4,2',6'-trihydroxy-4'-methoxydihydrochalcone (5), 4-hydroxy-3,5-bis(3-methyl-2-butenyl)-benzoic acid (6), 3,5-bis(3-methyl-2-butenyl)-4-methoxybenzoic acid (7), 4-hydroxy-3-(3-methyl-2-butenoyl)-5-(3-methyl-2-butenyl)-benzoic acid (8), 2,2-dimethyl-8-(3-methyl-2-butenyl)-2H-1-chromene-6-carboxylic acid (9), and 3-(3',7'-dimethyl-2',6'-octadienyl)-4-methoxybenzoic acid (10) were isolated from the leaves of Piper dennisii Trelease (Piperaceae), using a bioassay-guided fractionation to determine their antileishmanial potential. Among them, compound 10 exhibited the best antileishmanial activity (IC50 = 20.8 µM) against axenic amastigote forms of Leishmania amazonensis, with low cytotoxicity on murine macrophages. In the intracellular macrophage-infected model, compound 10 proved to be more active (IC50 = 4.2 µM). The chemical structures of compounds 1-10 were established based on the analysis of the spectroscopic data.


Subject(s)
Antiprotozoal Agents/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Leishmania/drug effects , Piper/chemistry , Animals , Antiprotozoal Agents/chemistry , Benzoates/chemistry , Benzoates/pharmacology , Benzoic Acid/chemistry , Drug Evaluation, Preclinical/methods , Hydroxybenzoate Ethers , Inhibitory Concentration 50 , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/parasitology , Mice , Molecular Structure , Plant Leaves/chemistry
6.
J Nat Prod ; 73(11): 1884-90, 2010 Nov 29.
Article in English | MEDLINE | ID: mdl-20954722

ABSTRACT

Three new caffeic acid esters (1-3), four new lignans (4-7), and the known compounds (7'S)-parabenzlactone (8), dihydrocubebin (9), and justiflorinol (10) have been isolated from leaves of Piper sanguineispicum. Their structures were determined by spectroscopic methods, including 1D and 2D NMR, HRCIMS, CD experiments, and chemical methods. Compounds 1-10 were assessed for their antileishmanial potential against axenic amastigote forms of Leishmania amazonensis. Caffeic acid esters 1 and 3 exhibited the best antileishmanial activity (IC(50) 2.0 and 1.8 µM, respectively) with moderate cytotoxicity on murine macrophages.


Subject(s)
Caffeic Acids/isolation & purification , Cytotoxins/isolation & purification , Leishmania/drug effects , Lignans/isolation & purification , Macrophages/drug effects , Piper/chemistry , Animals , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Chlorocebus aethiops , Cytotoxins/chemistry , Cytotoxins/pharmacology , Dioxolanes/chemistry , Dioxolanes/isolation & purification , Drug Screening Assays, Antitumor , Esters , Female , Inhibitory Concentration 50 , Lignans/chemistry , Lignans/pharmacology , Mice , Nuclear Magnetic Resonance, Biomolecular , Peru , Plant Leaves/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL