Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175698

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease of very high prevalence, especially in childhood, with no specific treatment or cure. As its pathogenesis is complex, multifactorial and not fully understood, further research is needed to increase knowledge and develop new targeted therapies. We have recently demonstrated the critical role of NAD+ and poly (ADP-ribose) (PAR) metabolism in oxidative stress and skin inflammation. Specifically, we found that hyperactivation of PARP1 in response to DNA damage induced by reactive oxygen species, and fueled by NAMPT-derived NAD+, mediated inflammation through parthanatos cell death in zebrafish and human organotypic 3D skin models of psoriasis. Furthermore, the aberrant induction of NAMPT and PARP activity was observed in the lesional skin of psoriasis patients, supporting the role of these signaling pathways in psoriasis and pointing to NAMPT and PARP1 as potential novel therapeutic targets in treating skin inflammatory disorders. In the present work, we report, for the first time, altered NAD+ and PAR metabolism in the skin of AD patients and a strong correlation between NAMPT and PARP1 expression and the lesional status of AD. Furthermore, using a human 3D organotypic skin model of AD, we demonstrate that the pharmacological inhibition of NAMPT and PARP reduces pathology-associated biomarkers. These results help to understand the complexity of AD and reveal new potential treatments for AD patients.


Subject(s)
Dermatitis, Atopic , Psoriasis , Animals , Humans , Inflammation , NAD/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Poly ADP Ribosylation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Psoriasis/etiology , Zebrafish/metabolism
2.
Dev Comp Immunol ; 145: 104710, 2023 08.
Article in English | MEDLINE | ID: mdl-37080369

ABSTRACT

Fish are the most diverse and successful group of vertebrate animals, with about 30,000 species. The study of fish immunity is of great importance for understanding the evolution of vertebrate immunity, as they are the first animals to show both innate and adaptive immune responses. Although fish immunity is similar to that of mammals, there are obvious differences, such as their dependence of ambient temperature, their poor antibody response, and lack of antibody switching and lymph nodes. In addition, several important differences have also been found between the innate immune responses of fish and mammals. Among these, we will discuss in this review the high resistance of fish to the toxic effects of lipopolysaccharide (LPS) which can be explained by the absence of a Toll-like receptor 4 (Tlr4) ortholog in most fish species or by the inability of the Tlr4/Md2 (Myeloid differentiation 2) complex to recognize LPS, together with the presence of a negative regulator of the LPS signaling complex formed by the TLR-like molecule Rp105 (Radioprotective 105) and Md1. Taken together, these data support the idea that, although TLR4 and RP105 arose from a common ancestor to fish and tetrapods, the TLR4/MD2 receptor complex for LPS recognition arose after their divergence about 450 million years ago.


Subject(s)
Lipopolysaccharides , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Signal Transduction , Fishes , Immunity, Innate , Lymphocyte Antigen 96 , Mammals
3.
Dev Comp Immunol ; 136: 104498, 2022 11.
Article in English | MEDLINE | ID: mdl-35948178

ABSTRACT

Prostaglandins (PGs) are highly reactive small lipophilic molecules derived from polyunsaturated fatty acids of the cell membrane and play a key role in the resolution of inflammation processes. 15-deoxy-Δ12,14-PGJ2 (15dPGJ2) is a cyclopentenone PG (CyPG) of the J series with anti-inflammatory, anti-proliferative and pro-apoptotic effects. This CyPG can signal through: (i) the PGD2 receptor (DP2) and peroxisome proliferator-activated receptor γ (PPARγ) or (ii) by covalent binding to protein nucleophiles, such as, thiols groups of cysteine, lysine or histidine via a Michael addition reaction, modifying its structure and function. In this work we show that acidophilic granulocytes (AGs) of gilthead seabream (Sparus aurata L.), the functional equivalent to mammalian neutrophils, constitutively expressed ppara, pparb and pparg genes, the latter showing the highest expression and up-regulation when stimulated by bacterial DNA. In addition, we tested the ability of 15dPGJ2, and its biotinylated analog, as well as several PPARγ ligands, to modulate reactive oxygen species (ROS) and/or cytokines production during a Toll like receptor (TLR)-mediated granulocyte response. Thus, 15dPGJ2 was able to significantly decrease bacterial DNA-induced ROS production and transcript levels of pparg, interleukin-1ß (il1b) and prostaglandin-endoperoxide synthase 2 (ptgs2). In contrast, its biotinylated analog was less potent and a higher dose was required to elicit the same effects on ROS production and cytokine expression. In addition, different PPARγ agonists were able to mimic the effects of 15dPGJ2. Conversely, the PPARγ antagonist T007097 abolished the effect of 15dPGJ2 on DNA bacterial-induced ROS production. Surprisingly, transactivation assays revealed that both 15dPGJ2 and its biotinylated analog signaled via Pparα and Pparß, but not by Pparγ. These results were further confirmed by HPLC/MS analysis, where Pparß was identified as an interactor of biotin-15dPGJ2 in naïve and DNA-stimulated leukocytes. Taken together, our data show that 15dPGJ2 acts both through Ppar activation and covalent binding to proteins in fish granulocytes and identify for the first time in vertebrates a role for Pparα and Pparß in the resolution of inflammation mediated by 15dPGJ2.


Subject(s)
PPAR-beta , Sea Bream , Animals , Cyclooxygenase 2/metabolism , Cyclopentanes , DNA, Bacterial , Granulocytes/metabolism , Inflammation , Mammals , PPAR alpha , PPAR gamma/genetics , PPAR gamma/metabolism , Prostaglandin D2/chemistry , Prostaglandin D2/pharmacology , Prostaglandins , Reactive Oxygen Species , Sea Bream/metabolism
4.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884924

ABSTRACT

Endocrine-disrupting chemicals include natural and synthetic estrogens, such as 17α-ethynilestradiol (EE2), which can affect reproduction, growth and immunity. Estrogen signalling is mediated by nuclear or membrane estrogen receptors, such as the new G-protein-coupled estrogen receptor 1 (GPER1). The present work studies the effect of EE2 and G1 (an agonist of GPER1) on body and muscle parameters and growth-related genes of 54 two-year-old seabreams. The fish were fed a diet containing EE2 (EE2 group) and G1 (G1 group) for 45 days and then a diet without EE2 or G1 for 122 days. An untreated control group was also studied. At 45 days, the shortest body length was observed in the G1 group, while 79 and 122 days after the cessation of treatments, the shortest body growth was observed in the EE2 group. Hypertrophy of white fibers was higher in the EE2 and G1 groups than it was in the control group, whereas the opposite was the case with respect to hyperplasia. Textural hardness showed a negative correlation with the size of white fibers. At the end of the experiment, all fish analyzed in the EE2 group showed a predominance of the gonadal ovarian area. In addition, the highest expression of the mafbx gene (upregulated in catabolic signals) and mstn2 (myogenesis negative regulator) was found in EE2-exposed fish.


Subject(s)
Ethinyl Estradiol/pharmacology , Fish Proteins/genetics , Muscle, Skeletal/drug effects , Sea Bream/physiology , Animals , Aquaculture , Fish Proteins/agonists , Gene Expression/drug effects , Male , Muscle, Skeletal/physiology , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Sea Bream/genetics , Sea Bream/growth & development , Testis/drug effects
5.
Front Immunol ; 12: 742827, 2021.
Article in English | MEDLINE | ID: mdl-34721409

ABSTRACT

In fish culture settings, the exogenous input of steroids is a matter of concern. Recently, we unveiled that in the gilthead seabream (Sparus aurata), the G protein-coupled estrogen receptor agonist G-1 (G1) and the endocrine disruptor 17α-ethinylestradiol (EE2) are potent modulators in polyreactive antibody production. However, the integral role of the microbiota upon immunity and antibody processing in response to the effect of EE2 remains largely unexplored. Here, juvenile seabreams continuously exposed for 84 days to oral G1 or EE2 mixed in the fish food were intraperitoneally (i.p.) immune primed on day 42 with the model antigen keyhole limpet hemocyanin (KLH). A critical panel of systemic and mucosal immune markers, serum VTG, and humoral, enzymatic, and bacteriolytic activities were recorded and correlated with gut bacterial metagenomic analysis 1 day post-priming (dpp). Besides, at 15 dpp, animals received a boost to investigate the possible generation of specific anti-KLH antibodies at the systemic and mucosal interphases by the end of the trial. On day 43, EE2 but not G1 induced a significant shift in the serum VTG level of naive fish. Simultaneously, significant changes in some immune enzymatic activities in the serum and gut mucus of the EE2-treated group were recorded. In comparison, the vaccine priming immunization resulted in an attenuated profile of most enzymatic activities in the same group. The gut genes qPCR analysis exhibited a related pattern, only emphasized by a significant shift in the EE2 group's il1b expression. The gut bacterial microbiome status underwent 16S rRNA dynamic changes in alpha diversity indices, only with the exposure to oral G1, supporting functional alterations on cellular processes, signaling, and lipid metabolism in the microbiota. By the same token, the immunization elevated the relative abundance of Fusobacteria only in the control group, while this phylum was depleted in both the treated groups. Remarkably, the immunization also promoted changes in the bacterial class Betaproteobacteria and the estrogen-associated genus Novosphingobium. Furthermore, systemic and mucosal KLH-specific immunoglobulin (Ig)M and IgT levels in the fully vaccinated fish showed only slight changes 84 days post-estrogenic oral administration. In summary, our results highlight the intrinsic relationship among estrogens, their associated receptors, and immunization in the ubiquitous fish immune regulation and the subtle but significant crosstalk with the gut endobolome.


Subject(s)
Ethinyl Estradiol/toxicity , Gastrointestinal Microbiome/immunology , Receptors, Estrogen/immunology , Receptors, G-Protein-Coupled/immunology , Sea Bream/immunology , Adjuvants, Immunologic/pharmacology , Animals , Endocrine Disruptors/toxicity , Fish Proteins/immunology , Fish Proteins/metabolism , Hemocyanins/immunology , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Sea Bream/metabolism , Vaccination
6.
PLoS Biol ; 19(11): e3001455, 2021 11.
Article in English | MEDLINE | ID: mdl-34748530

ABSTRACT

Several studies have revealed a correlation between chronic inflammation and nicotinamide adenine dinucleotide (NAD+) metabolism, but the precise mechanism involved is unknown. Here, we report that the genetic and pharmacological inhibition of nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the salvage pathway of NAD+ biosynthesis, reduced oxidative stress, inflammation, and keratinocyte DNA damage, hyperproliferation, and cell death in zebrafish models of chronic skin inflammation, while all these effects were reversed by NAD+ supplementation. Similarly, genetic and pharmacological inhibition of poly(ADP-ribose) (PAR) polymerase 1 (Parp1), overexpression of PAR glycohydrolase, inhibition of apoptosis-inducing factor 1, inhibition of NADPH oxidases, and reactive oxygen species (ROS) scavenging all phenocopied the effects of Nampt inhibition. Pharmacological inhibition of NADPH oxidases/NAMPT/PARP/AIFM1 axis decreased the expression of pathology-associated genes in human organotypic 3D skin models of psoriasis. Consistently, an aberrant induction of NAMPT and PARP activity, together with AIFM1 nuclear translocation, was observed in lesional skin from psoriasis patients. In conclusion, hyperactivation of PARP1 in response to ROS-induced DNA damage, fueled by NAMPT-derived NAD+, mediates skin inflammation through parthanatos cell death.


Subject(s)
Inflammation/pathology , NAD/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Parthanatos , Poly(ADP-ribose) Polymerases/metabolism , Skin/pathology , Animals , Apoptosis Inducing Factor/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , DNA Damage , Disease Models, Animal , Gene Expression Regulation/drug effects , Inflammation/genetics , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , Larva/metabolism , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Oxidative Stress/drug effects , Oxidative Stress/genetics , Parthanatos/drug effects , Parthanatos/genetics , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proteinase Inhibitory Proteins, Secretory/deficiency , Proteinase Inhibitory Proteins, Secretory/metabolism , Psoriasis/genetics , Psoriasis/pathology , Reactive Oxygen Species/metabolism , Zebrafish , Zebrafish Proteins/deficiency , Zebrafish Proteins/metabolism
7.
Foods ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256099

ABSTRACT

In the aquaculture industry, fish are stunned using a wide range of methods, but all of them trigger stress responses and affect the fish flesh quality. Chilled water is considered one of the most efficient methods, but even this is not a stress-free experience for the fish. Anesthetics included in the ice slurry or in water could decrease this stress and delay the loss of flesh quality. In this work, we analyze the effect of clove oil (CO) nanoencapsulated in ß-cyclodextrins (ß-CD) (CO + ß-CD), incorporated in the stunning bath, on the stress response and the organoleptic attributes of fresh marine and freshwater fish from four economically important fish species: Atlantic salmon, European seabass, Nile tilapia, and Rainbow trout. CO + ß-CD reduces the time required to induce anesthesia, independently of water salinity, habitat or water temperature. The plasmatic glucose and cortisol levels decreased in all four species, although the concentrations of CO varied between species. Moreover, plasmatic lactate level differed between the marine and freshwater fish. The use of CO + ß-CD extended the shelf life of fish from all the species studied (by 3-7 days). In conclusion, using CO encapsulated in ß-CD for anesthetizing fish can be regarded as an improved fish-stunning technique that reduces the anesthesia-induction time, decreases the stress response, and extends the shelf life of fresh fish.

8.
Sci Rep ; 10(1): 20067, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208754

ABSTRACT

Exposure to 17α-ethynylestradiol (EE2, 5 µg/g food) impairs some reproductive events in the protandrous gilthead seabream and a short recovery period does not allow full recovery. In this study, spermiating seabream males in the second reproductive cycle (RC) were fed a diet containing 5 or 2.5 µg EE2/g food for 28 days and then a commercial diet without EE2 for the remaining RC. Individuals were sampled at the end of the EE2 treatment and then at the end of the RC and at the beginning of the third RC, 146 and 333 days after the cessation of treatment, respectively. Increased hepatic transcript levels of the gene coding for vitellogenin (vtg) and plasma levels of Vtg indicated both concentrations of EE2 caused endocrine disruption. Modifications in the histological organization of the testis, germ cell proliferation, plasma levels of the sex steroids and pituitary expression levels of the genes coding for the gonadotropin ß-subunits, fshß and lhß were detected. The plasma levels of Vtg and most of the reproductive parameters were restored 146 days after treatments. However, although 50% of the control fish underwent sex reversal as expected at the third RC, male-to female sex change was prevented by both EE2 concentrations.


Subject(s)
Ethinyl Estradiol/pharmacology , Fish Proteins/metabolism , Gene Expression Regulation , Reproduction , Spermatogenesis , Transsexualism/prevention & control , Vitellogenins/metabolism , Animals , Estrogens/pharmacology , Female , Fish Proteins/genetics , Liver/drug effects , Male , Sea Bream , Testis/drug effects , Transsexualism/genetics , Vitellogenins/genetics
9.
Sci Rep ; 10(1): 7966, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32409650

ABSTRACT

17α-ethynilestradiol (EE2) and tamoxifen (Tmx) are pollutants world-wide distributed in aquatic environments. Gilthead seabream, Sparus aurata L., is highlighted as a species model of intensively culture in anthropogenic disturbed environments. The effects of these pollutants on gilthead seabream reproduction and some immune responses have been described but, the humoral innate antimicrobial activities have never received attention. In this work we analysed the latest in the plasma of gilthead seabream males of different ages and reproductive stages treated with 0, 2.5, 5 or 50 µg EE2 or 100 µg Tmx g-1 food during different times of exposure and of reverting to commercial diet (recovery). The peroxidase and protease activities decreased as the spermatogenesis of the first reproductive cycle (RC) proceeded in control fish. However, only protease and antiprotease activities showed different level at different stages of the second RC in control fish, but showed scarce disruption in fish treated with EE2 or Tmx. Peroxidase and bactericide activities are more sensitive to EE2, than to Tmx. The effects induced by EE2 varied depending on the activity analyzed, the dose and the time of exposure and the reproductive stage and the age of the specimens.


Subject(s)
Disease Resistance/drug effects , Endocrine Disruptors/adverse effects , Environmental Exposure/adverse effects , Immunity, Humoral/drug effects , Sea Bream/physiology , Animals , Fish Diseases/etiology , Fish Diseases/immunology , Fish Diseases/microbiology , Male , Oxidation-Reduction , Reproduction/drug effects , Sex Factors , Spermatogenesis/drug effects , Time Factors
10.
Dev Comp Immunol ; 105: 103583, 2020 04.
Article in English | MEDLINE | ID: mdl-31862296

ABSTRACT

The zebrafish has become an excellent model for the study of inflammation and immunity. Its unique advantages for in vivo imaging and gene and drug screening have allowed the visualization of dual oxidase 1 (Duox1)-derived hydrogen peroxide (H2O2) tissue gradients and its crosstalk with neutrophil infiltration to inflamed tissue. Thus, it has been shown that H2O2 directly recruits neutrophils via the Src-family tyrosine kinase Lyn and indirectly by the activation of several signaling pathways involved in inflammation, such as nuclear factor κB (NF-κB), mitogen activated kinases and the transcription factor AP1. In addition, this model has also unmasked the unexpected ability of H2O2 to induce the expression of the gene encoding the key neutrophil chemoattractant CXC chemokine ligand 8 by facilitating the accessibility of transcription factors to its promoter through histone covalent modifications. Finally, zebrafish models of psoriasis have shown that a H2O2/NF-κB/Duox1 positive feedback inflammatory loop operates in this chronic inflammatory disorder and that pharmacological inhibition of Duox1, but not of downstream mediators, inhibits inflammation and restores epithelial homeostasis. Therefore, these results have pointed out DUOX1 and H2O2 as therapeutic targets for the treatment of skin inflammatory disorders, such as psoriasis.


Subject(s)
Hydrogen Peroxide/metabolism , Inflammation/immunology , Neutrophils/immunology , Psoriasis/immunology , Zebrafish/immunology , Animals , Dual Oxidases/genetics , Dual Oxidases/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Humans , Interleukin-8/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Wound Healing
11.
Dev Comp Immunol ; 89: 102-110, 2018 12.
Article in English | MEDLINE | ID: mdl-30092317

ABSTRACT

It is well accepted that estrogens, the primary female sex hormones, play a key role in modulating different aspects of the immune response. Moreover, estrogens have been linked with the sexual dimorphism observed in some immune disorders, such as chronic inflammatory and autoimmune diseases. Nevertheless, their effects are often controversial and depend on several factors, such as the pool of estrogen receptors (ERs) involved in the response. Their classical mode of action is through nuclear ERs, which act as transcription factors, promoting the regulation of target genes. However, it has long been noted that some of the estrogen-mediated effects cannot be explained by these classical receptors, since they are rapid and mediated by non-genomic signaling pathways. Hence, the interest in membrane ERs, especially in G protein-coupled estrogen receptor 1 (GPER1), has grown in recent years. Although the presence of nuclear ERs, and ER signaling, in immune cells in mammals and fish has been well documented, information on membrane ERs is much scarcer. In this context, the present manuscript aims to review our knowledge concerning the effect of estrogens on fish immunity, with special emphasis on GPER1. For example, the numerous tools developed over recent years allowed us to report for the first time that the regulation of fish granulocyte functions by estrogens through GPER1 predates the split of fish and tetrapods more than 450 million years ago, pointing to the relevance of estrogens as modulators of the immune responses, and the pivotal role of GPER1 in immunity.


Subject(s)
Estrogens/immunology , Fish Proteins/immunology , Fishes/immunology , Receptors, Estrogen/immunology , Receptors, G-Protein-Coupled/immunology , Adaptive Immunity , Animals , Female , Immunity, Innate , Immunomodulation , Leukocytes/immunology , Male , Signal Transduction/immunology
12.
Biology (Basel) ; 7(1)2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29315244

ABSTRACT

In vertebrates, in addition to their classically reproductive functions, steroids regulate the immune system. This action is possible mainly due to the presence of steroid receptors in the different immune cell types. Much evidence suggests that the immune system of fish is vulnerable to xenosteroids, which are ubiquitous in the aquatic environment. In vivo and in vitro assays have amply demonstrated that oestrogens interfere with both the innate and the adaptive immune system of fish by regulating the main leukocyte activities and transcriptional genes. They activate nuclear oestrogen receptors and/or G-protein coupled oestrogen receptor. Less understood is the role of androgens in the immune system, mainly due to the complexity of the transcriptional regulation of androgen receptors in fish. The aim of this manuscript is to review our present knowledge concerning the effect of sex steroid hormones and the presence of their receptors on fish leukocytes, taking into consideration that the studies performed vary as regard the fish species, doses, exposure protocols and hormones used. Moreover, we also include evidence of the probable role of progestins in the regulation of the immune system of fish.

13.
Front Immunol ; 8: 736, 2017.
Article in English | MEDLINE | ID: mdl-28706519

ABSTRACT

Natural antibodies play crucial roles in pathogen elimination, B-cell survival and homeostasis, and inflammatory and autoimmune diseases. Although estrogens are able to regulate both innate and adaptive immune responses, their role in the production of natural antibodies is unknown. Here, we show that the dietary intake of the synthetic estradiol analog, 17α-ethinylestradiol (EE2), one of the most potent pharmaceutical estrogens and intensively used in human therapeutics as a component of most oral contraceptives, regulates the abundance and proliferation of T and IgM+ B lymphocytes in the teleost fish gilthead seabream (Sparus aurata L.). Furthermore, for the first time in vertebrates, it is shown that estrogen signaling through G protein-coupled estrogen receptor 1 (GPER1) induces the production of polyreactive natural antibodies, which are able to crossreact with unrelated antigens and commensal and pathogenic bacteria. In addition, the serum from fish treated with EE2 or the GPER1 agonist G1 shows higher complement-dependent bactericidal activity than that from non-treated specimens. These results demonstrate that estrogens and GPER1 are the key regulators of natural antibody production and pathogen clearance in fish, paving the way for future studies in other vertebrate classes.

14.
Biomed Hub ; 2(1): 1-13, 2017.
Article in English | MEDLINE | ID: mdl-31988900

ABSTRACT

BACKGROUND: The role of estrogens in immune functioning is relatively well known under both physiological and pathological conditions. Neutrophils are the most abundant circulating leukocytes in humans, and their abundance and function are regulated by estrogens, since they express estrogen receptors (ERs). Traditionally, estrogens were thought to act via classical nuclear ERs, namely ERα and ERß. However, it was observed that some estrogens induced biological effects only minutes after their application. This rapid, "nongenomic" effect of estrogens is mediated by a membrane-anchored receptor called G protein-coupled estrogen receptor 1 (GPER1). Nevertheless, the expression and role of GPER1 in the immune system has not been exhaustively studied, and its relevance in neutrophil functions remains unknown. METHODS: Human neutrophils were incubated in vitro with 10-100 µM of the GPER1-specific agonist G1 alone or in combination with lipopolysaccharide. GPER1 expression and subcellular localization, respiratory burst, life span, gene expression profile, and cell signaling pathways involved were then analyzed in stimulated neutrophils. RESULTS: Human neutrophils express a functional GPER1 which regulates their functions through cAMP/protein kinase A/cAMP response element-binding protein, p38 mitogen-activated protein kinase, and extracellular regulated MAPK signaling pathways. Thus, GPER1 activation in vitro increases the respiratory burst of neutrophils, extends their life span, and drastically alters their gene expression profile. CONCLUSIONS: Our results demonstrate that GPER1 activation promotes the polarization of human neutrophils towards a proinflammatory phenotype and point to GPER1 as a potential therapeutic target in immune diseases where neutrophils play a key role.

15.
Dev Comp Immunol ; 53(1): 55-62, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26133072

ABSTRACT

Although several studies have demonstrated the ability of some endocrine disruptive chemicals (EDCs) to alter the physiology of zebrafish, the immune-reproductive interaction has received little attention in this species. In this study, we used a homozygous line carrying an insertion of 8 amino acids in the ligand-binding domain of the estrogen receptor 2b gene (esr2b) to further understand the role of estrogen signaling on innate immunity. Adult mutant fish showed distorted sexual ratios related with alterations in testicular morphology and supraphysiological testosterone and 17ß-estradiol (E2) levels. Immunity-wise, although esr2b mutant fish showed unaltered antibacterial responses, they were unable to mount an effective antiviral response upon viral challenge. RT-qPCR analysis demonstrated that mutant fish were able to induce the genes encoding major antiviral molecules, including Ifnphi1, Ifnphi2, Infphi3, Mxb and Mxc, and the negative feedback regulator of cytokine signaling Socs1. Notably, although esr2b mutant larvae showed a similar resistance to SVCV infection to their wild type siblings, waterborne E2 increased their viral susceptibility. Similarly, the exposure of adult wild type zebrafish to E2 also resulted in increased susceptibility to SVCV infection. Finally, the administration of recombinant Ifnphi1 hardly reversed the higher viral susceptibility of esr2b mutant zebrafish, suggesting that elevated socs1 levels impair Ifn signaling. All together, these results uncover an important role for E2 and Esr signaling in the fine-tuning of sexual hormone balance and the antiviral response of vertebrates.


Subject(s)
Estrogen Receptor beta/genetics , Fish Diseases/immunology , Rhabdoviridae/immunology , Vibrio/immunology , Zebrafish Proteins/genetics , Zebrafish/immunology , Animals , Estradiol/metabolism , Estrogen Receptor beta/deficiency , Fish Diseases/microbiology , Fish Diseases/virology , Immunity, Innate/immunology , Interferons/biosynthesis , Larva/immunology , Myxovirus Resistance Proteins/biosynthesis , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , Zebrafish/genetics , Zebrafish Proteins/biosynthesis , Zebrafish Proteins/deficiency , Zebrafish Proteins/metabolism
16.
Mar Drugs ; 11(12): 4973-92, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24335523

ABSTRACT

Pollutants have been reported to disrupt the endocrine system of marine animals, which may be exposed through contaminated seawater or through the food chain. Although 17α-ethynylestradiol (EE2), a drug used in hormone therapies, is widely present in the aquatic environment, current knowledge on the sensitivity of marine fish to estrogenic pollutants is limited. We report the effect of the dietary intake of 5 µg EE2/g food on different processes of testicular physiology, ranging from steroidogenesis to pathogen recognition, at both pre-spermatogenesis (pre-SG) and spermatogenesis (SG) reproductive stages, of gilthead seabream (Sparus aurata L.), a marine hermaphrodite teleost. A differential effect between pre-SG and SG specimens was detected in the sex steroid serum levels and in the expression profile of some steroidogenic-relevant molecules, vitellogenin, double sex- and mab3-related transcription factor 1 and some hormone receptors. Interestingly, EE2 modified the expression pattern of some immune molecules involved in testicular physiology. These differences probably reflect a developmental adjustment of the sensitivity to EE2 in the gilthead seabream gonad.


Subject(s)
Ethinyl Estradiol/adverse effects , Gonadal Steroid Hormones/metabolism , Gonads/drug effects , Reproduction/drug effects , Spermatogenesis/drug effects , Animals , Cytokines/immunology , Ethinyl Estradiol/immunology , Fishes/immunology , Gene Expression/drug effects , Gene Expression/immunology , Gonadal Steroid Hormones/immunology , Gonads/immunology , Male , Reproduction/immunology , Sea Bream/immunology , Sperm Motility/drug effects , Sperm Motility/immunology , Spermatogenesis/immunology , Testis/drug effects , Testis/immunology , Water Pollutants, Chemical/adverse effects , Water Pollutants, Chemical/immunology
17.
J Immunol ; 191(9): 4628-39, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24062489

ABSTRACT

Neutrophils are major participants in innate host responses. It is well known that estrogens have an immune-modulatory role, and some evidence exists that neutrophil physiology can be altered by these molecules. Traditionally, estrogens act via classical nuclear estrogen receptors, but the identification of a G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor that binds estradiol and other estrogens, has opened up the possibility of exploring additional estrogen-mediated effects. However, information on the importance of GPER for immunity, especially, in neutrophils is scant. In this study, we report that gilthead seabream (Sparus aurata L.) acidophilic granulocytes, which are the functional equivalent of mammalian neutrophils, express GPER at both mRNA and protein levels. By using a GPER selective agonist, G1, it was found that GPER activation in vitro slightly reduced the respiratory burst of acidophilic granulocytes and drastically altered the expression profile of several genes encoding major pro- and anti-inflammatory mediators. In addition, GPER signaling in vivo modulated adaptive immunity. Finally, a cAMP analog mimicked the effects of G1 in the induction of the gene coding for PG-endoperoxide synthase 2 and in the induction of CREB phosphorylation, whereas pharmacological inhibition of protein kinase A superinduced PG-endoperoxide synthase 2. Taken together, our results demonstrate for the first time, to our knowledge, that estrogens are able to modulate vertebrate granulocyte functions through a GPER/cAMP/protein kinase A/CREB signaling pathway and could establish therapeutic targets for several immune disorders in which estrogens play a prominent role.


Subject(s)
Estrogens/metabolism , Granulocytes/metabolism , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cells, Cultured , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Granulocytes/immunology , Neutrophil Activation , Neutrophils/immunology , Phosphorylation , Prostaglandin-Endoperoxide Synthases/genetics , RNA, Messenger/biosynthesis , Receptors, Estrogen/agonists , Receptors, G-Protein-Coupled/agonists , Sea Bream , Signal Transduction
18.
J Steroid Biochem Mol Biol ; 138: 183-94, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23743364

ABSTRACT

Androgens can induce complete spermatogenesis in immature or prepubertal teleost fish; however, many aspects of the role of androgens in adult teleost spermatogenesis remain elusive. We used the in situ forming microparticle (ISM) system containing 1mg of testosterone (T)/kg body weight (T-ISM) in a homogenous population of gilthead seabream at testicular involution stage to study in vivo the effects of T on the sex steroid hormone balance and on the physiology of the gilthead seabream gonad. The levels of T, 11-ketotestosterone (11KT) and 17ß-estradiol (E2) in plasma, gonad and liver were determined in T-ISM implanted specimens after 7, 14, 21 and 28 days. The effect of T-ISM was evaluated on (i) de novo synthesis and metabolism of T in the gonad and liver by measuring the gene expression levels of the main steroidogenic proteins involved, (ii) the progress of spermatogenesis, (iii) the presence of different leukocyte cell types in the gonad, and (iv) the mRNA expression of some genes involved in the leukocyte migratory influx into the gonad and of some immune-relevant molecules. T-ISM implants promote an increase of T up to supra-physiological levels which induce a depletion of E2 levels and maintain the 11KT levels at physiological concentrations. The gene expression profile of some steroidogenic enzymes in gonad and liver ruled out the transformation of T into estrogenic compounds following T-ISM implantation. Moreover, androgens may also be involved in the leukocyte migratory influx, which occurred even when cytokine, chemokine and cell adhesion molecule gene expressions were down-regulated. Moreover, T-ISM implants block germ cell proliferation, although increased dmrt1 gene expression may prevent the complete depletion of germ cells in the gonad. Furthermore, T down-regulated the expression of several tlr genes, which may result in the inhibition of the immune response in the gonad through the impaired ability to recognize and respond to pathogens.


Subject(s)
Gonadal Steroid Hormones/blood , Gonadal Steroid Hormones/metabolism , Gonads/metabolism , Sea Bream/blood , Sea Bream/metabolism , Testosterone/blood , Animals , Estradiol/pharmacology , Gonads/drug effects , Liver/drug effects , Liver/metabolism , Male , Testosterone/analogs & derivatives , Testosterone/pharmacology
19.
Dev Comp Immunol ; 36(3): 547-56, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22020196

ABSTRACT

There is increasing public attention concerning the effect of endocrine disruptor chemicals (EDCs) on the immune system. One important group belonging to EDCs are the environmental estrogens. Commonly found in the effluents in wastewater treatment plants, 17α-ethynylestradiol (EE(2)) which is used in contraceptive pills, is an endocrine disruptor with strong estrogenic effects. This study aims to investigate the capacity of EE(2) to modulate in vivo and in vitro the innate immune response of the gilthead seabream (Sparus aurata L.), a teleost species of great commercial value. For this purpose, adult specimens were bath-exposed to EE(2) (0, 5 and 50 ng/L) and then immunized with hemocyanin in the presence of the adjuvant aluminum. The results indicate that, after 15 days of EE(2)-exposure, the disruptor was able to inhibit in a dose-dependent manner the induction of interleukin-1ß (IL-1ß) gene expression, but did not significantly alter the specific antibody titer. To shed light on the role played by EE(2) into seabream immune response, leukocytes were exposed in vitro to several concentrations of EE(2) (0, 0.5, 5, 50 and 500 ng/ml) for 3, 16 and 48 h and the production of reactive oxygen intermediates, the phagocytic activity and the gene expression profile of these cells were analyzed. EE(2) was seen to inhibit both cellular activities and to alter the immune gene expression profile in primary macrophages. Thus, low concentrations of EE(2) increase the mRNA levels of IL-1 ß, IL-6, tumour necrosis factor α and tumour growth factor ß in non-activated macrophages. In contrast, EE(2) treatment of activated macrophages resulted in the decreased expression of pro-inflammatory genes and the increased expression of genes encoding anti-inflammatory and tissue remodeling/repair enzymes. Taken together, our results suggest that EE(2) might alter the capacity of fish to appropriately respond to infection although it does not behave as an immunosuppressor.


Subject(s)
Adaptive Immunity/drug effects , Endocrine Disruptors/toxicity , Estrogens/toxicity , Immunity, Innate/drug effects , Sea Bream/immunology , Animals , Cytokines/genetics , Cytokines/immunology , Estrogen Receptor alpha/genetics , Fish Proteins/genetics , Gene Expression Profiling , Leukocytes/metabolism , Macrophages/metabolism , Phagocytosis/drug effects , Sea Bream/physiology , Vitellogenesis/drug effects
20.
Mol Immunol ; 48(15-16): 2079-86, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21821292

ABSTRACT

A wide variety of chemicals discharged from industrial and municipal sources have been reported to disrupt the endocrine system of animals, which may be exposed via the food chain and contaminated water. 17α-Ethinylestradiol (EE(2)), a drug used in oral contraceptives and hormone replacement therapy, has a widespread presence in the aquatic environment. Current knowledge on the sensitivity of marine fish to estrogenic environmental chemicals is limited. We report here the effects of dietary intake of EE(2) on gilthead seabream, a marine hermaphrodite teleost, focusing on the immune events that take place in the gonad. When seabream males were fed with 5, 50, 125 and 200µg EE(2)/g food for 7, 14, 21 and 28days an infiltration of acidophilic granulocytes and B lymphocytes occurred in the testis as the same time that spermatogenesis is disrupted. Moreover, the dietary intake of EE(2) promoted a dose-dependent up-regulation of the expression of genes coding for cytokines, chemokines and adhesion molecules correlated with a leukocyte infiltration.


Subject(s)
Chemotaxis, Leukocyte/drug effects , Diet/adverse effects , Estrogens/adverse effects , Ethinyl Estradiol/adverse effects , Sea Bream , Testis/drug effects , Animals , Estrogens/administration & dosage , Ethinyl Estradiol/administration & dosage , Gene Expression/drug effects , Hermaphroditic Organisms/drug effects , Immunohistochemistry , Male , Reverse Transcriptase Polymerase Chain Reaction , Sea Bream/immunology , Spermatogenesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...