Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Rep ; 14(1): 3565, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347000

ABSTRACT

Gout is a common autoinflammatory joint diseases characterized by deposition of monosodium urate (MSU) crystals which trigger an innate immune response mediated by inflammatory cytokines. IGF1R is one of the loci associated with both urate levels and gout susceptibility in GWAS to date, and IGF-1-IGF-1R signaling is implicated in urate control. We investigate the role of IGF-1/IGF1R signaling in the context of gouty inflammation. Also, we test the gout and urate-associated IGF1R rs6598541 polymorphism for association with the inflammatory capacity of mononuclear cells. For this, freshly isolated human peripheral blood mononuclear cells (PBMCs) were exposed to recombinant IGF-1 or anti-IGF1R neutralizing antibody in the presence or absence of solubilized urate, stimulated with LPS/MSU crystals. Also, the association of rs6598541 with IGF1R and protein expression and with ex vivo cytokine production levels after stimulation with gout specific stimuli was tested. Urate exposure was not associated with IGF1R expression in vitro or in vivo. Modulation of IGF1R did not alter urate-induced inflammation. Developing urate-induced trained immunity in vitro was not influenced in cells challenged with IGF-1 recombinant protein. Moreover, the IGF1R rs6598541 SNP was not associated with cytokine production. Our results indicate that urate-induced inflammatory priming is not regulated by IGF-1/IGF1R signaling in vitro. IGF1R rs6598541 status was not asociated with IGF1R expression or cytokine production in primary human PBMCs. This study suggests that the role of IGF1R in gout is tissue-specific and may be more relevant in the control of urate levels rather than in inflammatory signaling in gout.


Subject(s)
Gout , Hyperuricemia , Humans , Uric Acid/metabolism , Hyperuricemia/complications , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Leukocytes, Mononuclear/metabolism , Genome-Wide Association Study , Gout/genetics , Gout/complications , Inflammation/metabolism , Cytokines/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism
2.
Joint Bone Spine ; 91(3): 105698, 2024 May.
Article in English | MEDLINE | ID: mdl-38309518

ABSTRACT

OBJECTIVE: Hyperuricaemia is necessary for gout. High urate concentrations have been linked to inflammation in mononuclear cells. Here, we explore the role of the suppressor of cytokine signaling 3 (SOCS3) in urate-induced inflammation. METHODS: Peripheral blood mononuclear cells (PBMCs) from gout patients, hyperuricemic and normouricemic individuals were cultured for 24h with varying concentrations of soluble urate, followed by 24h restimulation with lipopolysaccharides (LPS)±monosodium urate (MSU) crystals. Transcriptomic profiling was performed using RNA-Sequencing. DNA methylation was assessed using Illumina Infinium® MethylationEPIC BeadChip system (EPIC array). Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was determined by flow cytometry. Cytokine responses were also assessed in PBMCs from patients with JAK2 V617F tyrosine kinase mutation. RESULTS: PBMCs pre-treated with urate produced more interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) and less interleukin-1 receptor anatagonist (IL-1Ra) after LPS simulation. In vitro, urate treatment enhanced SOCS3 expression in control monocytes but no DNA methylation changes were observed at the SOCS3 gene. A dose-dependent reduction in phosphorylated STAT3 concomitant with a decrease in IL-1Ra was observed with increasing concentrations of urate. PBMCs with constitutively activated STAT3 (JAK2 V617F mutation) could not be primed by urate. CONCLUSION: In vitro, urate exposure increased SOCS3 expression, while urate priming, and subsequent stimulation resulted in decreased STAT3 phosphorylation and IL-1Ra production. There was no evidence that DNA methylation constitutes a regulatory mechanism of SOCS3. Elevated SOCS3 and reduced pSTAT3 could play a role in urate-induced hyperinflammation since urate priming had no effect in PBMCs from patients with constitutively activated STAT3.


Subject(s)
Cytokines , Gout , STAT3 Transcription Factor , Suppressor of Cytokine Signaling 3 Protein , Uric Acid , Humans , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Uric Acid/pharmacology , STAT3 Transcription Factor/metabolism , Cytokines/metabolism , Gout/genetics , Gout/metabolism , Cells, Cultured , Male , Myeloid Cells/metabolism , Myeloid Cells/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Hyperuricemia/metabolism , Female , Middle Aged , DNA Methylation , Janus Kinase 2/metabolism
3.
iScience ; 26(10): 107909, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37810213

ABSTRACT

Gout is an autoinflammatory disease triggered by a complex innate immune response to MSU crystals and inflammatory triggers. While hyperuricemia is an obligatory risk factor for the development of gout, the majority of individuals with hyperuricemia never develop gout but have an increased risk of developing cardiometabolic disorders. Current management of gout aims at MSU crystal dissolution by lowering serum urate. We apply a targeted proteomic analysis, using Olink inflammation panel, to a large group of individuals with gout, asymptomatic hyperuricemia, and normouricemic controls, and we show a urate-driven inflammatory signature. We add in vivo evidence of persistent immune activation linked to urate exposure and describe immune pathways involved in the pathogenesis of gout. Our results support a pro-inflammatory effect of asymptomatic hyperuricemia and pave the way for new research into targetable mechanisms in gout and cardiometabolic complications of asymptomatic hyperuricemia.

4.
Arthritis Res Ther ; 25(1): 30, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36850003

ABSTRACT

BACKGROUND: Soluble urate leads to a pro-inflammatory phenotype in human monocytes characterized by increased production of IL-1ß and downregulation of IL-1 receptor antagonist, the mechanism of which remains to be fully elucidated. Previous transcriptomic data identified differential expression of genes in the transforming growth factor (TGF)-ß pathway in monocytes exposed to urate in vitro. In this study, we explore the role of TGF-ß in urate-induced hyperinflammation in peripheral blood mononuclear cells (PBMCs). METHODS: TGF-ß mRNA in unstimulated PBMCs and protein levels in plasma were measured in individuals with normouricemia, hyperuricemia and gout. For in vitro validation, PBMCs of healthy volunteers were isolated and treated with a dose ranging concentration of urate for assessment of mRNA and pSMAD2. Urate and TGF-ß priming experiments were performed with three inhibitors of TGF-ß signalling: SB-505124, 5Z-7-oxozeaenol and a blocking antibody against TGF-ß receptor II. RESULTS: TGF-ß mRNA levels were elevated in gout patients compared to healthy controls. TGF-ß-LAP levels in serum were significantly higher in individuals with hyperuricemia compared to controls. In both cases, TGF-ß correlated positively to serum urate levels. In vitro, urate exposure of PBMCs did not directly induce TGF-ß but did enhance SMAD2 phosphorylation. The urate-induced pro-inflammatory phenotype of monocytes was partly reversed by blocking TGF-ß. CONCLUSIONS: TGF-ß is elevated in individuals with hyperuricemia and correlated to serum urate concentrations. In addition, the urate-induced pro-inflammatory phenotype in human monocytes is mediated by TGF-ß signalling. Future studies are warranted to explore the intracellular pathways involved and to assess the clinical significance of urate-TGF-ß relation.


Subject(s)
Gout , Hyperuricemia , Humans , Gout/genetics , Leukocytes , Leukocytes, Mononuclear , Uric Acid/pharmacology , Transforming Growth Factor beta/genetics
5.
Biomedicines ; 12(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38255155

ABSTRACT

(1) Background: Although obstructive sleep apnea (OSA) is associated with increased cardiovascular morbidity, the link between OSA and cardiovascular disease (CVD) is not completely elucidated. Thus, we aim to assess cardiovascular risk (CVR) using SCORE 2 and SCORE 2 for older persons (SCORE 2OP), and to evaluate the association between the endothelial biomarkers VCAM-1, ICAM-1, epicardial fat, and sleep study parameters in order to improve current clinical practices and better understand the short-and long-term CVRs in OSA patients. (2) Methods: 80 OSA patients and 37 healthy volunteers were enrolled in the study. SCORE2 and SCORE 2 OP regional risk charts (validated algorithms to predict the 10-year risk of first-onset CVD) were used for the analysis of CVR. Two-dimensional echocardiography was performed on all patients and epicardial fat thickness was measured. VCAM-1 and ICAM-1 serum levels were assessed in all patients. (3) Results: OSA patients were classified as being at high CVR, regardless of the type of score achieved. Increased EFT was observed in the OSA group. VCAM-1 was associated with a high CVR in OSA patients, but no significant correlation was observed between adhesion molecules and epicardial fat thickness. (4) Conclusions: OSA patients have a high CVR according to the SCORE 2 and SCORE 2OP risk scores. VCAM-1 may be associated with a high CVR in OSA patients. Extending conventional risk stratification scores by adding other potential biomarkers improves the risk stratification and guide treatment eligibility for CVD prevention in the OSA population.

6.
Sci Rep ; 12(1): 22347, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572720

ABSTRACT

There is a consistent relationship between obstructive sleep apnea (OSA) and cardiovascular diseases. It is already recognized that OSA may influence the geometry and function of the right ventricle (RV). This has encouraged the development of echocardiographic evaluation for screening of OSA and its severity. Three-dimensional speckle tracking echocardiography (3D STE) is in assumption better, compared with 2D STE, because it overcomes the standard 2D echo limitations. Thus, the purpose of our study is to evaluate whether 3D STE measurements, could predict the positive diagnosis and severity of OSA. We enrolled 69 patients with OSA and 37 healthy volunteers who underwent a cardiorespiratory sleep study. 2DE was performed in all patients. RVEF and 3D RVGLS were measured by 3DSTE. NT pro BNP plasma level was also assessed in all participants. 3D RV GLS (- 13.5% vs. - 22.3%, p < 0.001) and 3D RVEF (31.9% vs. 50%, p < 0.001) were reduced in patients with OSA, compared with normal individuals. 3D Strain parameters showed better correlation to standard 2D variables, than 3D RVEF. Except for NT pro BNP (p = 0.059), all parameters served to distinguish between severe and mild-moderate cases of OSA. 3D STE may be a reliable and accurate method for predicting OSA. Consequently, 3D RV GLS is a good tool of assessing the RV global function in OSA, because it correlates well with other established measurements of RV systolic function. Furthermore, 3D RV GLS was a precise parameter in identifying severe cases of OSA, while NT pro BNP showed no association.


Subject(s)
Echocardiography , Sleep Apnea, Obstructive , Humans , Heart Ventricles , Stroke Volume , Systole , Sleep Apnea, Obstructive/diagnostic imaging
7.
J Pers Med ; 11(10)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34683142

ABSTRACT

BACKGROUND: Despite efforts at treatment, obstructive sleep apnea (OSA) remains a major health problem, especially with increasing evidence showing an association with cardiovascular morbidity and mortality. The treatment of choice for OSA patients is Continuous Positive Airway Pressure (CPAP), which has been proven in randomized controlled trials to be an effective therapy for this condition. The impact of CPAP on the cardiovascular pathology associated with OSA remains, however, unclear. Although the effect of CPAP has been previously studied in relation to cardiovascular outcome, follow-up of the treatment impact on cardiovascular risk factors at one year of therapy is lacking in a Romanian population. Thus, we aimed to evaluate the one-year effect of CPAP therapy on lipid profile, inflammatory state, blood pressure and cardiac function, assessed by echocardiography, on a cohort of Romanian OSA patients. METHODS: We enrolled 163 participants and recorded their baseline demographic and clinical characteristics with a follow-up after 12 months. Inflammatory and cardiovascular risk factors were assessed at baseline and follow up. RESULTS: Our results show that CPAP therapy leads to attenuation of cardiovascular risk factors including echocardiographic parameters, while having no effect on inflammatory markers. CONCLUSION: Treatment of OSA with CPAP proved to have beneficial effects on some of the cardiovascular risk factors while others remained unchanged, raising new questions for research into the treatment and management of OSA patients.

8.
Pharmgenomics Pers Med ; 14: 349-358, 2021.
Article in English | MEDLINE | ID: mdl-33889011

ABSTRACT

INTRODUCTION: Articular and bone damage, which is so disabling in Mucopolysaccharidosis (MPS), requires attention as to the explanatory bias of the pathogenetic mechanisms identified to date. The vitamin D receptor (VDR) has been investigated in many studies in correlation with bone metabolism, osteoporosis, and the impaired bone mineral density associated with certain polymorphisms of the VDR gene. AIM: This study aims to observe whether there is an association between clinical features, phospho-calcium metabolism parameters and the VDR gene polymorphisms in patients with MPS. PATIENTS AND METHOD: We evaluated six patients with MPS type I, 20 patients with MPS type II, two patients with MPS types IIIA and IIIB and three patients with MPS type IVB. In these patients, phospho-calcium metabolism, markers of bone formation, bone radiographs and bone densitometry were evaluated, as were four polymorphisms of the VDR gene (ApaI, BsmI, FokI and TaqI). RESULTS: There was a deficiency in 25 hydroxy vitamin D in MPS type I patients at the final evaluation and in MPS type II patients, both at ERT initiation and at the last evaluation. The analysed polymorphisms were not associated with modified calcium-phosphor levels, but some differences were observed regarding the level of 25 OH vitamin D. Thus, in the case of AA polymorphism, all patients have a 25 OH vitamin D deficiency, and one patient with the AA genotype and three with Aa have a 25 OH vitamin D deficiency and secondary hyperparathyroidism due to this deficiency (four patients), all of them having the Bb phenotype. CONCLUSION: In MPS patients, vitamin D deficiency is observed, as it is in some patients with secondary hyperparathyroidism, which indicates vitamin D supplementation to protect bone metabolism. There are no obvious correlations between VDR polymorphism and bone metabolism in MPS patients.

9.
Immunol Rev ; 294(1): 92-105, 2020 03.
Article in English | MEDLINE | ID: mdl-31853991

ABSTRACT

Trained immunity is a process in which innate immune cells undergo functional reprogramming in response to pathogens or damage-associated molecules leading to an enhanced non-specific immune response to subsequent stimulation. While this capacity to respond more strongly to stimuli is beneficial for host defense, in some circumstances it can lead to maladaptive programming and chronic inflammation. Gout is characterized by persistent low-grade inflammation and is associated with an increased number of comorbidities. Hyperuricemia is the main risk factor for gout and is linked to the development of comorbidities. Several experimental studies have shown that urate can mechanistically alter the inflammatory capacity of myeloid cells, while observational studies have indicated an association of hyperuricemia to a wide spectrum of common adult inflammatory diseases. In this review, we argue that hyperuricemia is a main culprit in the development of the long-term systemic inflammation seen in gout. We revisit existing evidence for urate-induced transcriptional and epigenetic reprogramming that could lead to an altered functional state of circulating monocytes consisting in enhanced responsiveness and maladaptive immune responses. By discussing specific functional adaptations of monocytes and macrophages induced by soluble urate or monosodium urate crystals and their contribution to inflammation in vitro and in vivo, we further enforce that urate is a metabolite that can induce innate immune memory and we discuss future research and possible new therapeutic approaches for gout and its comorbidities.


Subject(s)
Arthritis, Gouty/immunology , Hyperuricemia/immunology , Inflammation/immunology , Macrophages/immunology , Monocytes/immunology , Uric Acid/metabolism , Animals , Cellular Reprogramming , Epigenesis, Genetic , Humans , Immunity, Innate , Immunologic Memory
SELECTION OF CITATIONS
SEARCH DETAIL
...