Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(44): 28494-28504, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36320524

ABSTRACT

The United Nations Organization (UNO) has revealed that approximately 2.1 billion people do not have access to treated water. Methylene blue (MB) and rhodamine B are produced as water pollutants in textile, plastic, and dye industries. In this study, oxalic acid or lactic acid surface-modification were applied to TiO2/ZnO nanoparticles aiming to improve antibacterial and adsorption properties. The mixtures containing the corresponding acid and nanoparticles in 0.25 : 1/0.5 : 1 ratios of ZnO and TiO2 correspondingly were subjected to ultrasonic treatment with a catenoidal ultrasonic probe coupled to a homemade ultrasonic generator with an output power of 750 W, wave amplitude of 50% and variable frequency in the range of 15-50 kHz. To verify the influence of the ultrasonic treatment, different treatment times of 30, 45, 60, and 90 min were applied. Unmodified and modified TiO2/ZnO nanoparticles were characterized by FTIR, TGA, XRD, SEM, and XPS. From the results, obtained from the physicochemical characterization, in the ZTO90 and ZTL90 samples a greater modification was shown. The SEM images showed that a coating was present on the surface of the ceramic particles of the ZTL90 sample. The O 1s deconvolution in the XPS spectra indicates a greater presence of C[double bond, length as m-dash]O bonds in the ZTL90 sample. In parallel, the sample ZTL90 presented 85 and 89% adsorption efficiency for MB and rhodamine B dyes in a time of 12 min, and important antibacterial activity against E. coli and S. epidermis could be evidenced.

2.
Nanomaterials (Basel) ; 11(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34684919

ABSTRACT

Design of functional materials it is of great importance to address important problems in the areas of health and environment. In the present work, the synthesis and application of poly-meric nanocomposite materials with poly (lactic acid) (PLA) and modified nanoclay (cloisite 20A) with 1,4-diaminobutane dihydrochloride at different reaction times were studied. The concentra-tions of the nanoclays in the PLA matrix were 0.5, 1 and, 5% by weight (wt%). TGA showed that sample C20AM 120 (120 min of treatment) obtained the highest degree of modification considering the weight losses of the analyzed samples. An FT-IR signal at 1443 cm-1 suggests that the organic modifier is intercalated between the galleries of the clay. XRD, SEM and XPS suggest good disper-sion at low concentrations of the nanoclay. Adsorption tests revealed that the highest percentage of removal of uremic toxins and methylene blue was the sample with 5% wt/wt chemically modified nanoclay, suggesting good affinity between the modified nanoclays in the PLA matrix with the nitrogenous compounds.

3.
Polymers (Basel) ; 13(11)2021 Jun 06.
Article in English | MEDLINE | ID: mdl-34204165

ABSTRACT

Approximately 200,000 tons of water contaminated with dyes are discharged into effluents annually, which in addition to infectious diseases constitute problems that afflict the population worldwide. This study evaluated the mechanical properties, surface structure, antimicrobial performance, and methylene blue dye-contaminant adsorption using the non-woven fabrics manufactured by melt-blowing. The non-woven fabrics are composed of nylon 6 (Ny 6) and zinc oxide nanoparticles (ZnO NPs). The polymer nanocomposites were previously fabricated using variable frequency ultrasound assisted-melt-extrusion to be used in melt-blowing. Energy dispersion spectroscopy (SEM-EDS) images showed a homogeneous dispersion of the ZnO nanoparticles in nylon 6. The mechanical properties of the composites increased by adding ZnO compared to the nylon 6 matrix, and sample Ny/ZnO 0.5 showed the best mechanical performance. All fabric samples exhibited antimicrobial activity against S. aureus and fungus C. albicans, and the incorporation of ZnO nanoparticles significantly improved this property compared to pure nylon 6. The absorption efficiency of methylene blue (MB), during 60 min, for the samples Ny/ZnO 0.05 and Ny/ZnO 0.25 wt%, were 93% and 65%, respectively. The adsorption equilibrium data obeyed the Langmuir isotherm.

4.
Nanomaterials (Basel) ; 9(9)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31491904

ABSTRACT

Chronic kidney disease (CKD) is a worldwide public health problem. In stages III and IV of CKD, uremic toxins must be removed from the patient by absorption, through a treatment commonly called hemodialysis. Aiming to improve the absorption of uremic toxins, we have studied its absorption in chemically modified graphene nanoplatelets (GNPs). This study involved the reaction between GNPs and diamines with reaction times of 30, 45 and 60 min using ultrasound waves of different amplitudes and frequencies. Functionalized GNPs were analyzed by Fourier Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy and energy dispersitive spectroscopy (SEM-EDS), and Thermogravimetric analysis (TGA). The analysis of the functional groups confirmed the presence of amide and hydroxyl groups on the surface of the GNPs by reactions of diamines with carboxylic acids and epoxides. Adsorption of uremic toxins was determined using equilibrium isotherms, where the maximum percentage of removal of uremic toxins was 97%. Dispersion of modified graphene nanoplatelets was evaluated in water, ethanol and hexane, as a result of this treatment was achieved a good and effective dispersion of diamines-modified graphene nanoplatelets in ethanol and hexane. Finally, the results of hemolysis assays of the modified graphene with amine demonstrated that it was not cytotoxic when using 500 mg/mL. The samples of modified graphene demonstrated low degree of hemolysis (<2%), so this material can be used for in vivo applications such as hemodialysis.

5.
Polymers (Basel) ; 11(7)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31330943

ABSTRACT

The study of polymeric nanocomposites is a possible alternative to conventional flame retardants. The aim of the present work is to investigate the effects of carbon-nanotubes (CNT) and TiO2 nanoparticles (NPs) on the thermo-mechanical, flammability, and electrical properties of polypropylene (PP). In this work, PP-TiO2/CNT nanocomposites were obtained with TiO2/CNT mixtures (ratio 1:2) through the melt extrusion process, with different weight percentage of nanoparticles (1, 5, and 10 wt %). The PP-TiO2/CNT nanocomposites were characterized by DSC, TGA, MFI, FTIR, XRD, and SEM. It was possible to determine that the thermal stability of the PP increases when increasing the content of NPs. A contrary situation is observed in the degree of crystallinity and thermo-oxidative degradation, which decreased with respect to pure PP. The TiO2 NPs undergo coalition and increase their size at a lower viscosity of the nanocomposite (1 and 5 wt %). The mechanical properties decreased slightly, however, the Young's modulus presented an improvement of 10% as well as electrical conductivity, this behavior was noted in nanocomposites of 10 wt % of NPs. Flammability properties were measured with a cone calorimeter, and a reduction in the peak heat release rate was observed in nanocomposites with contents of nanoparticles of 5 and 10 wt.

6.
Materials (Basel) ; 12(5)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30823647

ABSTRACT

Ultrasound energy is a green and economically viable alternative to conventional techniques for surface modification of materials. The main benefits of this technique are the decrease of processing time and the amount of energy used. In this work, graphene nanoplatelets were treated with organic acids under ultrasonic radiation of 350 W at different times (30 and 60 min) aiming to modify their surface with functional acid groups and to improve the adsorption of uremic toxins. The modified graphene nanoplatelets were characterized by Fourier transform infrared spectroscopy (FT⁻IR), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The optimum time for modification with organic acids was 30 min. The modified nanoplatelets were tested as adsorbent material for uremic toxins using the equilibrium isotherms where the adsorption isotherm of urea was adjusted for the Langmuir model. From the solution, 75% of uremic toxins were removed and absorbed by the modified nanoplatelets.

SELECTION OF CITATIONS
SEARCH DETAIL
...