Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Inorg Biochem ; 246: 112301, 2023 09.
Article in English | MEDLINE | ID: mdl-37392615

ABSTRACT

A new heteroleptic copper(II) compound named C0-UDCA was prepared by reaction of [Cu(phen)2(OH2)](ClO4)2 (C0) with the bile ursodeoxycholic acid (UDCA). The resulting compound is able to inhibit the lipoxygenase enzyme showing more efficacy than the precursors C0 and UDCA. Molecular docking simulations clarified the interactions with the enzyme as due to allosteric modulation. The new complex shows antitumoral effect on ovarian (SKOV-3) and pancreatic (PANC-1) cancer cells at the Endoplasmic Reticulum (ER) level by activating the Unfolded Protein Response. In particular, the chaperone BiP, the pro-apoptotic protein CHOP and the transcription factor ATF6 are upregulated in the presence of C0-UDCA. The combination of Intact Cell MALDI-MS and statistical analysis have allowed us to discriminate between untreated and treated cells based on their mass spectrometry fingerprints.


Subject(s)
Lipoxygenase Inhibitors , Neoplasms , Lipoxygenase Inhibitors/pharmacology , Ursodeoxycholic Acid/pharmacology , Phenanthrolines/chemistry , Copper/pharmacology , Copper/chemistry , Molecular Docking Simulation , Endoplasmic Reticulum Stress , Cell Line , Enzyme Inhibitors/pharmacology , Apoptosis , Pancreatic Neoplasms
2.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675192

ABSTRACT

The design of novel antityrosinase agents appears extremely important in medical and industrial sectors because an irregular production of melanin is related to the insurgence of several skin-related disorders (e.g., melanoma) and the browning process of fruits and vegetables. Because melanogenesis also involves a nonenzymatic oxidative process, developing dual antioxidant and antityrosinase agents is advantageous. In this work, we evaluated the antioxidant and tyrosinase inhibition ability of two new bishydroxylated and two new monohydroxylated derivatives of (1E)-2-(1-(2-oxo-2H-chromen-3-yl)ethylidene)hydrazine-1-carbothioamide (T1) using different experimental and computational approaches. The study was also carried out on another monohydroxylated derivative of T1 for comparison. Interestingly, these molecules have more potent tyrosinase-inhibitory properties than the reference compound, kojic acid. Moreover, the antioxidant activity appears to be influenced according to the number and substitution pattern of the hydroxyl groups. The safety of the compounds without (T1), with one (T3), and with two (T6) hydroxyl groups, has also been assessed by studying their cytotoxicity on melanocytes. These results indicate that (1E)-2-(1-(2-oxo-2H-chromen-3-yl)ethylidene)hydrazine-1-carbothioamide and its hydroxylated derivatives are promising molecules for further drug development studies.


Subject(s)
Antioxidants , Thiosemicarbazones , Antioxidants/pharmacology , Monophenol Monooxygenase , Thiosemicarbazones/pharmacology , Melanocytes , Coumarins , Melanins , Enzyme Inhibitors/pharmacology
3.
Molecules ; 27(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35011273

ABSTRACT

Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been found at high levels in serum and tissues of several types of human cancers. Under these circumstances, two strategies are commonly followed in the development of novel anticancer Copper-based drugs: the sequestration of free Copper ions and the synthesis of Copper complexes that trigger cell death. The latter strategy has been followed in the last 40 years and many reviews have covered the anticancer properties of a broad spectrum of Copper complexes, showing that the activity of these compounds is often multi factored. In this work, we would like to focus on the anticancer properties of mixed Cu(II) complexes bearing substituted or unsubstituted 1,10-phenanthroline based ligands and different classes of inorganic and organic auxiliary ligands. For each metal complex, information regarding the tested cell lines and the mechanistic studies will be reported and discussed. The exerted action mechanisms were presented according to the auxiliary ligand/s, the metallic centers, and the increasing complexity of the compound structures.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Copper/chemistry , Phenanthrolines/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Survival , Chemistry Techniques, Synthetic , Coordination Complexes/chemical synthesis , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Ligands , Molecular Structure
4.
Metallomics ; 12(6): 891-901, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32337526

ABSTRACT

The novel copper complex [Cu(phen)2(salubrinal)](ClO4)2 (C0SAL) has been synthesised and characterised. Copper(ii) is coordinated by salubrinal through the thionic group, as shown by the UV-Vis, IR, ESI-MS and tandem mass results, together with the theoretical calculations. The formed complex showed a DPPH radical scavenging ability higher than that of salubrinal alone. Studies on lipid oxidation inhibition showed that the C0SAL concentration, required to inhibit the enzyme, was lower than that of salubrinal. The inhibition of the enzyme could take place via allosteric modulation, as suggested by docking calculations. C0SAL showed a good cytotoxic activity on A2780 cells, 82 fold higher than that of the precursor salubrinal and 1.4 fold higher than that of [Cu(phen)2(H2O)](ClO4)2. Treatment with C0SAL in SKOV3 ovarian cancer cells induced expression of GRP-78 and DDIT3 regulators of ER-stress response. The cytotoxic effect of C0SAL was reverted in the presence of TUDCA, suggesting that C0SAL induces cell death through ER-stress. In A2780 cells treated with C0SAL γ-H2AX was accumulated, suggesting that DNA damage was also involved.


Subject(s)
Cinnamates/pharmacology , Copper/pharmacology , Phenanthrolines/pharmacology , Thiourea/analogs & derivatives , Antiviral Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , DNA Damage/drug effects , DNA Damage/genetics , Humans , Lipid Peroxidation/drug effects , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Molecular Structure , Taurochenodeoxycholic Acid/pharmacology , Thiourea/pharmacology , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
5.
J Inorg Biochem ; 177: 101-109, 2017 12.
Article in English | MEDLINE | ID: mdl-28946026

ABSTRACT

Coumarins show biological activity and are widely exploited for their therapeutic effects. Although a great number of coumarins substituted by heterocyclic moieties have been prepared, few studies have been carried out on coumarins containing pyridine heterocycle, which is known to modulate their physiological activities. We prepared and characterized three novel 3-(pyridin-2-yl)coumarins and their corresponding copper(II) complexes. We extended our investigations also to three known similar coumarins, since no data about their biochemical activity was previously been reported. The antiproliferative activity of the studied compounds was tested against human derived tumor cell lines and one human normal cell line. The DNA binding constants were determined and docking studies with DNA carried out. Selected Quantitative Structure-Activity Relationship (QSAR) descriptors were calculated in order to relate a set of structural and topological descriptors of the studied compounds to their DNA interaction and cytotoxic activity.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/chemistry , Coumarins/pharmacology , DNA/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Coumarins/chemical synthesis , Coumarins/chemistry , Coumarins/toxicity , Humans , Ligands , Molecular Docking Simulation , Quantitative Structure-Activity Relationship
6.
J Inorg Biochem ; 173: 126-133, 2017 08.
Article in English | MEDLINE | ID: mdl-28511063

ABSTRACT

A large number of cancers are treated with cisplatin (CDDP). However, its use is limited by drug resistance, which is often related to intracellular levels of thiol-containing molecules such as glutathione (GSH). The role of GSH in cisplatin-resistant cancer cells is still unclear. GSH may form adducts with CDDP which results in the deactivation of the drug, and, actually, a high intracellular level of GSH was observed in some cisplatin-resistant cancers. To overcome drug resistance, CDDP is often administered in combination with one or more drugs to exploit a possible synergistic effect. In previous studies, we observed that the sensitivity to CDDP of leukemic and ovarian cisplatin-resistant cancer cells was restored in the presence of [Cu(phen)2(H2O)](ClO4)2 (C0) (phen is 1,10-phenathroline). In order to clarify the possible interactions between GSH and CDDP, the reactivity and competitive reactions among CDDP, C0 and GSH in binary and ternary mixtures were studied. The investigation was extended also to [Cu(phen)(H2O)2(ClO4)2] (C10) and GSSG, the oxidized form of GSH. It was observed that CDDP was able to react with the studied copper complexes and with GSH or GSSG. However, in mixtures containing CDDP, GSH or GSSG and C0 or C10, only copper-glutathione complexes were detected, while no platinum-glutathione adducts were found.


Subject(s)
Antineoplastic Agents/chemistry , Cisplatin/chemistry , Copper/chemistry , Glutathione/chemistry , Phenanthrolines/chemistry , Drug Resistance , Humans , Platinum/chemistry , Spectrometry, Mass, Electrospray Ionization , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL