Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Clin Cancer Res ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578281

ABSTRACT

PURPOSE: To explore the cellular crosstalk of tumor resident mast cells (MCs) in controlling the activity of cancer-associated fibroblasts (CAFs) to overcome TME abnormalities, enhancing the efficacy of immune checkpoint inhibitors (ICIs) in sarcoma. EXPERIMENTAL DESIGN: We used a coculture system followed by further validation in mouse models of fibrosarcoma and osteosarcoma with or without administration of the MC stabilizer and antihistamine ketotifen. To evaluate the contribution of ketotifen in sensitizing tumors to therapy, we performed combination studies with doxorubicin chemotherapy and anti-PD-L1 (B7-H1, clone 10F.9G2) treatment. We investigated the ability of ketotifen to modulate the TME in human sarcomas in the context of a repurpose phase II clinical trial. RESULTS: Inhibition of MC activation with ketotifen successfully suppressed CAF proliferation and stiffness of the extracellular matrix accompanied by an increase in vessel perfusion in fibrosarcoma and osteosarcoma as indicated by ultrasound shear wave elastography imaging. The improved tissue oxygenation increased the efficacy of chemo-immunotherapy, supported by enhanced T cell infiltration and acquisition of tumor antigen-specific memory. Importantly, the effect of ketotifen in reducing tumor stiffness was further validated in sarcoma patients highlighting its translational potential. CONCLUSIONS: Our study suggests the targeting of MCs with clinically administered drugs, such as antihistamines, as a promising approach to overcome resistance to immunotherapy in sarcomas.

2.
Adv Drug Deliv Rev ; 207: 115239, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437916

ABSTRACT

The cellular barriers are major bottlenecks for bioactive compounds entering into cells to accomplish their biological functions, which limits their biomedical applications. Nanocarriers have demonstrated high potential and benefits for encapsulating bioactive compounds and efficiently delivering them into target cells by overcoming a cascade of intracellular barriers to achieve desirable therapeutic and diagnostic effects. In this review, we introduce the cellular barriers ahead of drug delivery and nanocarriers, as well as summarize recent advances and strategies of nanocarriers for increasing internalization with cells, promoting intracellular trafficking, overcoming drug resistance, targeting subcellular locations and controlled drug release. Lastly, the future perspectives of nanocarriers for intracellular drug delivery are discussed, which mainly focus on potential challenges and future directions. Our review presents an overview of intracellular drug delivery by nanocarriers, which may encourage the future development of nanocarriers for efficient and precision drug delivery into a wide range of cells and subcellular targets.


Subject(s)
Drug Carriers , Nanoparticles , Humans , Delayed-Action Preparations , Drug Delivery Systems , Drug Resistance
3.
J Control Release ; 369: 283-295, 2024 May.
Article in English | MEDLINE | ID: mdl-38522816

ABSTRACT

Pancreatic cancer is characterized by a densely fibrotic stroma. The fibrotic stroma hinders the intratumoral penetration of nanomedicine and diminishes therapeutic efficacy. Fibrosis is characterized by an abnormal organization of extracellular matrix (ECM) components, namely the abnormal deposition and/or orientation of collagen and fibronectin. Abnormal ECM organization is chiefly driven by pathological signaling in pancreatic stellate cells (PSCs), the main cell type involved in fibrogenesis. However, whether targeting signaling pathways involved in abnormal ECM organization improves the intratumoral penetration of nanomedicines is unknown. Here, we show that targeting transforming growth factor-ß (TGFß)/Rho-associated kinase (ROCK) 1/2 signaling in PSCs normalizes ECM organization and concomitantly improves macromolecular permeability of the fibrotic stroma. Using a 3-dimensional cell culture model of the fibrotic pancreatic cancer microenvironment, we found that pharmacological inhibition of TGFß or ROCK1/2 improves the permeation of various macromolecules. By using an isoform-specific pharmacological inhibitor and siRNAs, we show that targeting ROCK2, but not ROCK1, alone is sufficient to normalize ECM organization and improve macromolecular permeability. Moreover, we found that ROCK2 inhibition/knockdown attenuates Yes-associated protein (YAP) nuclear localization in fibroblasts co-cultured with pancreatic cancer cells in 3D. Finally, pharmacological inhibition or siRNA-mediated knockdown of YAP normalized ECM organization and improved macromolecular permeability. Our results together suggest that the TGFß/ROCK2/YAP signaling axis may be therapeutically targeted to normalize ECM organization and improve macromolecular permeability to augment therapeutic efficacy of nanomedicines in pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Pancreatic Stellate Cells , Permeability , Transforming Growth Factor beta , Tumor Microenvironment , rho-Associated Kinases , rho-Associated Kinases/metabolism , rho-Associated Kinases/antagonists & inhibitors , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Humans , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/drug effects , Pancreatic Stellate Cells/pathology , Transforming Growth Factor beta/metabolism , Fibrosis , Extracellular Matrix/metabolism , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Transcription Factors/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism
4.
Nanoscale Horiz ; 9(5): 731-741, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38505973

ABSTRACT

Phototherapy shows great potential for pinpoint tumour treatment. Heptamethine cyanine dyes like IR783 have high potential as agents for antitumour phototherapy due to their inherent tumour targeting ability, though their effectiveness in vivo is unsatisfactory for clinical translation. To overcome this limitation, we present an innovative strategy involving IR783-based polymeric nanoassemblies that improve the dye's performance as an antitumoural photosensitizer. In the formulation, IR783 is modified with cysteamine and used to initiate the ring-opening polymerization (ROP) of the N-carboxyanhydride of benzyl-L-aspartate (BLA), resulting in IR783-installed poly(BLA). Compared to free IR783, the IR783 dye in the polymer adopts a twisted molecular conformation and tuned electron orbital distribution, remarkably enhancing its optical properties. In aqueous environments, the polymers spontaneously assemble into nanostructures with 60 nm diameter, showcasing surface-exposed IR783 dyes that function as ligands for cancer cell and mitochondria targeting. Moreover, the nanoassemblies stabilized the dyes and enhanced the generation of reactive oxygen species (ROS) upon laser irradiation. Thus, in murine tumor models, a single injection of the nanoassemblies with laser irradiation significantly inhibits tumour growth with no detectable off-target toxicity. These findings highlight the potential for improving the performance of heptamethine cyanine dyes in antitumor phototherapy through nano-enabled strategies.


Subject(s)
Carbocyanines , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Humans , Animals , Mice , Carbocyanines/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy/methods , Cell Line, Tumor , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/radiation effects , Antineoplastic Agents/therapeutic use , Polymers/chemistry , Nanostructures/chemistry , Nanostructures/therapeutic use
5.
Angew Chem Int Ed Engl ; 63(14): e202317817, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38342757

ABSTRACT

The differential enzymatic activity in the endo/lysosomes of particular cells could trigger targeted endosomal escape functions, enabling selective intracellular protein delivery. However, this strategy may be jeopardized due to protein degradation during endosomal trafficking. Herein, using custom made fluorescent probes to assess the endosomal activity of cathepsin B (CTSB) and protein degradation, we found that certain cancer cells with hyperacidified endosomes grant a spatiotemporal window where CTSB activity surpass protein digestion. This inspired the engineering of antibody-loaded polymeric nanocarriers having CTSB-activatable endosomal escape ability. The nanocarriers selectively escaped from the endo/lysosomes in the cells with high endosomal CTSB activity and delivered active antibodies to intracellular targets. This study provides a viable strategy for cell-specific protein delivery using stimuli-responsive nanocarriers with controlled endosomal escape.


Subject(s)
Endosomes , Neoplasms , Endosomes/metabolism , Antibodies/metabolism , Polymers/metabolism , Lysosomes/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
6.
Biomacromolecules ; 25(2): 1058-1067, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38181450

ABSTRACT

mRNA-based therapeutics are revolutionizing the landscape of medical interventions. However, the short half-life of mRNA and transient protein expression often limits its therapeutic potential, demanding high treatment doses or repeated administrations. Self-replicating RNA (RepRNA)-based treatments could offer enhanced protein production and reduce the required dosage. Here, we developed polymeric micelles based on flexible poly(ethylene glycol)-poly(glycerol) (PEG-PG) block copolymers modified with phenylalanine (Phe) moieties via biodegradable ester bonds for the efficient delivery of RepRNA. These polymers successfully encapsulated RepRNA into sub-100 nm micelles assisted by the hydrophobicity of the Phe moieties and their ability to π-π stack with the bases in RepRNA. The micelles made from Phe-modified PEG-PG (PEG-PG(Phe)) effectively maintained the integrity of the loaded RepRNA in RNase-rich serum conditions. Once taken up by cells, the micelles triggered a pH-responsive membrane disruption, promoted by the strong protonation of the amino groups at endosomal pH, thereby delivering the RepRNA to the cytosol. The system induced strong protein expression in vitro and outperformed commercial transfecting reagents in vivo, where it resulted in enhanced and long-lasting protein expression.


Subject(s)
Micelles , Phenylalanine , RNA , Cell Line, Tumor , Hydrogen-Ion Concentration , Polymers/chemistry , Polyethylene Glycols/chemistry , RNA, Messenger , Drug Carriers/chemistry
7.
ACS Nano ; 17(24): 24654-24667, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38054429

ABSTRACT

Ongoing research is actively exploring the use of immune checkpoint inhibitors to treat solid tumors by inhibiting the PD-1/PD-L1 axis and reactivating the function of cytotoxic T effector cells. Many types of solid tumors, however, are characterized by a dense and stiff stroma and are difficult to treat. Mechanotherapeutics have formed a recent class of drugs that aim to restore biomechanical abnormalities of the tumor microenvironment, related to increased stiffness and hypo-perfusion. Here, we have developed a polymeric formulation containing pirfenidone, which has been successful in restoring the tumor microenvironment in breast tumors and sarcomas. We found that the micellar formulation can induce similar mechanotherapeutic effects to mouse models of 4T1 and E0771 triple negative breast tumors and MCA205 fibrosarcoma tumors but with a dose 100-fold lower than that of the free pirfenidone. Importantly, a combination of pirfenidone-loaded micelles with immune checkpoint inhibition significantly delayed primary tumor growth, leading to a significant improvement in overall survival and in a complete cure for the E0771 tumor model. Furthermore, the combination treatment increased CD4+ and CD8+ T cell infiltration and suppressed myeloid-derived suppressor cells, creating favorable immunostimulatory conditions, which led to immunological memory. Ultrasound shear wave elastography (SWE) was able to monitor changes in tumor stiffness during treatment, suggesting optimal treatment conditions. Micellar encapsulation is a promising strategy for mechanotherapeutics, and imaging methods, such as SWE, can assist their clinical translation.


Subject(s)
Immunotherapy , Micelles , Mice , Animals , Pyridones/pharmacology , Pyridones/therapeutic use , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Tumor Microenvironment
8.
Genes (Basel) ; 14(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003016

ABSTRACT

The precise mechanism of resistance to anti-cancer drugs such as platinum drugs is not fully revealed. To reveal the mechanism of drug resistance, the molecular networks of anti-cancer drugs such as cisplatin, carboplatin, oxaliplatin, and arsenic trioxide were analyzed in several types of cancers. Since diffuse-type stomach adenocarcinoma, which has epithelial-mesenchymal transition (EMT)-like characteristics, is more malignant than intestinal-type stomach adenocarcinoma, the gene expression and molecular networks in diffuse- and intestinal-type stomach adenocarcinomas were analyzed. Analysis of carboplatin revealed the causal network in diffuse large B-cell lymphoma. The upstream regulators of the molecular networks of cisplatin-treated lung adenocarcinoma included the anti-cancer drug trichostatin A (TSA), a histone deacetylase inhibitor. The upstream regulator analysis of cisplatin revealed an increase in FAS, BTG2, SESN1, and CDKN1A, and the involvement of the tumor microenvironment pathway. The molecular networks were predicted to interact with several microRNAs, which may contribute to the identification of new drug targets for drug-resistant cancer. Analysis of oxaliplatin, a platinum drug, revealed that the SPINK1 pancreatic cancer pathway is inactivated in ischemic cardiomyopathy. The study showed the importance of the molecular networks of anti-cancer drugs and tumor microenvironment in the treatment of cancer resistant to anti-cancer drugs.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Immediate-Early Proteins , MicroRNAs , Humans , Cisplatin , Carboplatin/pharmacology , Platinum/pharmacology , Platinum/therapeutic use , Oxaliplatin/therapeutic use , MicroRNAs/genetics , MicroRNAs/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Microenvironment , Trypsin Inhibitor, Kazal Pancreatic , Tumor Suppressor Proteins
9.
Macromol Biosci ; 23(12): e2300275, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37565723

ABSTRACT

Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.


Subject(s)
Cytokines , Neoplasms , Humans , Neoplasms/drug therapy , Drug Delivery Systems , Immunotherapy
10.
J Control Release ; 362: 278-296, 2023 10.
Article in English | MEDLINE | ID: mdl-37640110

ABSTRACT

Vaccination is an innovative strategy for cancer treatment by leveraging various components of the patients' immunity to boost an anti-tumor immune response. Rationally designed nanoparticles are well suited to maximize cancer vaccination by the inclusion of immune stimulatory adjuvants. Also, nanoparticles might control the pharmacokinetics and destination of the immune potentiating compounds. Poly-γ-glutamic acid (γ-PGA) based nanoparticles (NPs), which have a natural origin, can be easily taken up by dendritic cells (DCs), which leads to the secretion of cytokines which ameliorates the stimulation capacity of T cells. The intrinsic adjuvant properties and antigen carrier properties of γ-PGA NPs have been the focus of recent investigations as they can modulate the tumor microenvironment, can contribute to systemic anti-tumor immunity and subsequently inhibit tumor growth. This review provides a comprehensive overview on the potential of γ-PGA NPs as antigen carriers and/or adjuvants for anti-cancer vaccination.


Subject(s)
Nanoparticles , Neoplasms , Humans , Glutamic Acid , Adjuvants, Immunologic/pharmacology , Antigens , Adjuvants, Pharmaceutic , Polyglutamic Acid , Neoplasms/prevention & control , Vaccination , Dendritic Cells , Tumor Microenvironment
11.
Anal Chem ; 95(30): 11335-11341, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37465896

ABSTRACT

Polydiacetylene (PDA) is a popular mechanochromic material often used in biosensing. The effect of its headgroup-headgroup interactions on thermochromism such as pH or salt concentration dependency has been extensively studied before; however, their effect on mechanochromism at the nanoscale is left unstudied. In this work, nanofriction force microscopy and fluorescence microscopy were combined to study the effect of pH and ionic strength on the polydiacetylene (PDA) force sensitivity at the nanoscale. We found that the increase in pH from 5.7 to 8.2 caused an 8-fold enhancement in force sensitivity. The elevation of NaCl concentration from 10 to 200 mM also made the PDA 5 times more force-sensitive. These results suggest that the PDA force sensitivity at the nanoscale can be conveniently enhanced by "pre-stimulation" with pH or ionic strength.

12.
Cancer Sci ; 114(9): 3783-3792, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37337413

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is physically palpated as a hard tumor with an unfavorable prognosis. Assessing physical features and their association with pathological features could help to elucidate the mechanism of physical abnormalities in cancer tissues. A total of 93 patients who underwent radical surgery for pancreatic and bile duct cancers at a single center hospital during a 28-month period were recruited for this study that aimed to estimate the stiffness of PDAC tissues compared to the other neoplasms and assess relationships between tumor stiffness and pathological features. Physical alterations and pathological features of PDAC, with or without preoperative therapy, were analyzed. The immunological tumor microenvironment was evaluated using multiplexed fluorescent immunohistochemistry. The stiffness of PDAC correlated with the ratio of Azan-Mallory staining, α-smooth muscle actin, and collagen I-positive areas of the tumors. Densities of CD8+ T cells and CD204+ macrophages were associated with tumor stiffness in cases without preoperative therapy. Pancreatic ductal adenocarcinoma treated with preoperative therapy was softer than that without, and the association between tumor stiffness and immune cell infiltration was not shown after preoperative therapy. We observed the relationship between tumor stiffness and immunological features in human PDAC for the first time. Immune cell densities in the tumor center were smaller in hard tumors than in soft tumors without preoperative therapies. Preoperative therapy could alter physical and immunological aspects, warranting further study. Understanding of the correlations between physical and immunological aspects could lead to the development of new therapies.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , CD8-Positive T-Lymphocytes , Tumor Microenvironment , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Prognosis , Pancreatic Neoplasms
13.
Polymers (Basel) ; 15(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37376272

ABSTRACT

Multi-arm star-shaped block copolymers with precisely tuned nano-architectures are promising candidates for drug delivery. Herein, we developed 4- and 6-arm star-shaped block copolymers consisting of poly(furfuryl glycidol) (PFG) as the core-forming segments and biocompatible poly(ethylene glycol) (PEG) as the shell-forming blocks. The polymerization degree of each block was controlled by adjusting the feeding ratio of a furfuryl glycidyl ether and ethylene oxide. The size of the series of block copolymers was found to be less than 10 nm in DMF. In water, the polymers showed sizes larger than 20 nm, which can be related to the association of the polymers. The star-shaped block copolymers effectively loaded maleimide-bearing model drugs in their core-forming segment with the Diels-Alder reaction. These drugs were rapidly released upon heating via a retro Diels-Alder step. When the star-shaped block copolymers were injected intravenously in mice, they showed prolonged blood circulation, with more than 80% of the injected dose remaining in the bloodstream at 6 h after intravenous injection. These results indicate the potential of the star-shaped PFG-PEG block copolymers as long-circulating nanocarriers.

14.
Polymers (Basel) ; 15(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050422

ABSTRACT

Medulloblastoma is a life-threatening disease with poor therapeutic outcomes. In chemotherapy, low drug accumulation has been a cause of these outcomes. Such inadequate response to treatments has been associated with low drug accumulation, particularly with a limited cellular uptake of drugs. Recently, the conjugation of drugs to ligand molecules with high affinity to tumor cells has attracted much attention for enhancing drug internalization into target cells. Moreover, combining tumor-targeting ligands with nano-scaled drug carriers can potentially improve drug loading capacity and the versatility of the delivery. Herein, we focused on the possibility of targeting CD276/B7-H3, which is highly expressed on the medulloblastoma cell membrane, as a strategy for enhancing the cellular uptake of ligand-installed nanocarriers. Thus, anti-CD276 antibodies were conjugated on the surface of model nanocarriers based on polyion complex micelles (PIC/m) via click chemistry. The results showed that the anti-CD276 antibody-installed PIC/m improved intracellular delivery into CD276-expressing medulloblastoma cells in a CD276-dependent manner. Moreover, increasing the number of antibodies on the surface of micelles improved the cellular uptake efficiency. These observations indicate the potential of anti-CD276 antibody-installed nanocarriers for promoting drug delivery in medulloblastoma.

15.
Sci Technol Adv Mater ; 24(1): 2170164, 2023.
Article in English | MEDLINE | ID: mdl-36950277

ABSTRACT

Messenger RNA (mRNA) therapeutics have recently demonstrated high clinical potential with the accelerated approval of SARS-CoV-2 vaccines. To fulfill the promise of unprecedented mRNA-based treatments, the development of safe and efficient carriers is still necessary to achieve effective delivery of mRNA. Herein, we prepared mRNA-loaded nanocarriers for enhanced in vivo delivery using biocompatible block copolymers having functional amino acid moieties for tunable interaction with mRNA. The block copolymers were based on flexible poly(ethylene glycol)-poly(glycerol) (PEG-PG) modified with glycine (Gly), leucine (Leu) or tyrosine (Tyr) via ester bonds to generate block catiomers. Moreover, the amino acids can be gradually detached from the block copolymers after ester bond hydrolyzation, avoiding cytotoxic effects. When mixed with mRNA, the block catiomers formed narrowly distributed polymeric micelles with high stability and enhanced delivery efficiency. Particularly, the micelles based on tyrosine-modified PEG-PG (PEG-PGTyr), which formed a polyion complex (PIC) and π-π stacking with mRNA, displayed excellent stability against polyanions and promoted mRNA integrity in serum. PEG-PGTyr-based micelles also increased the cellular uptake and the endosomal escape, promoting high protein expression both in vitro and in vivo. Furthermore, the PEG-PGTyr-based micelles significantly extended the half-life of the loaded mRNA after intravenous injection. Our results highlight the potential of PEG-PGTyr-based micelles as safe and effective carriers for mRNA, expediting the rational design of polymeric materials for enhanced mRNA delivery.

16.
Adv Healthc Mater ; 12(15): e2202688, 2023 06.
Article in English | MEDLINE | ID: mdl-36785927

ABSTRACT

Messenger RNA (mRNA)-based therapies offer great promise for the treatment of a variety of diseases. In 2020, two FDA approvals of mRNA-based vaccines have elevated mRNA vaccines to global recognition. However, the therapeutic capabilities of mRNA extend far beyond vaccines against infectious diseases. They hold potential for cancer vaccines, protein replacement therapies, gene editing therapies, and immunotherapies. For realizing such advanced therapies, it is crucial to develop effective carrier systems. Recent advances in materials science have led to the development of promising nonviral mRNA delivery systems. In comparison to other carriers like lipid nanoparticles, polymer-based delivery systems often receive less attention, despite their unique ability to carefully tune their chemical features to promote mRNA protection, their favorable pharmacokinetics, and their potential for targeting delivery. In this review, the central features of polymer-based systems for mRNA delivery highlighting the molecular design criteria, stability, and biodistribution are discussed. Finally, the role of targeting ligands for the future of RNA therapies is analyzed.


Subject(s)
Cancer Vaccines , Nanoparticles , Polymers/chemistry , RNA, Messenger/genetics , RNA, Messenger/therapeutic use , RNA, Messenger/metabolism , Tissue Distribution , Nanoparticles/chemistry , Genetic Therapy
17.
Adv Sci (Weinh) ; 10(10): e2205139, 2023 04.
Article in English | MEDLINE | ID: mdl-36739605

ABSTRACT

Treatment of immunologically cold tumors is a major challenge for immune checkpoint inhibitors (ICIs). Interleukin 12 (IL-12) can invigorate ICIs against cold tumors by establishing a robust antitumor immunity. However, its toxicity and systemic induction of counteracting immunosuppressive signals have hindered translation. Here, IL-12 activity is spatiotemporally controlled for safely boosting efficacy without the stimulation of interfering immune responses by generating a nanocytokine that remains inactive at physiological pH, but unleashes its full activity at acidic tumor pH. The IL-12-based nanocytokine (Nano-IL-12) accumulate and release IL-12 in tumor tissues, eliciting localized antitumoral inflammation, while preventing systemic immune response, counteractive immune reactions, and adverse toxicities even after repeated intravenous administration. The Nano-IL-12-mediated spatiotemporal control of inflammation prompt superior anticancer efficacy, and synergize with ICIs to profoundly inflame the tumor microenvironment and completely eradicate ICI-resistant primary and metastatic tumors. The strategy could be a promising approach toward safer and more effective immunotherapies.


Subject(s)
Interleukin-12 , Neoplasms , Humans , Neoplasms/therapy , Inflammation/pathology , Immunotherapy , Tumor Microenvironment
18.
Nat Commun ; 13(1): 7165, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418896

ABSTRACT

Nano-immunotherapy improves breast cancer outcomes but not all patients respond and none are cured. To improve efficacy, research focuses on drugs that reprogram cancer-associated fibroblasts (CAFs) to improve therapeutic delivery and immunostimulation. These drugs, however, have a narrow therapeutic window and cause adverse effects. Developing strategies that increase CAF-reprogramming while limiting adverse effects is urgent. Here, taking advantage of the CAF-reprogramming capabilities of tranilast, we developed tranilast-loaded micelles. Strikingly, a 100-fold reduced dose of tranilast-micelles induces superior reprogramming compared to free drug owing to enhanced intratumoral accumulation and cancer-associated fibroblast uptake. Combination of tranilast-micelles and epirubicin-micelles or Doxil with immunotherapy increases T-cell infiltration, resulting in cures and immunological memory in mice bearing immunotherapy-resistant breast cancer. Furthermore, shear wave elastography (SWE) is able to monitor reduced tumor stiffness caused by tranilast-micelles and predict response to nano-immunotherapy. Micellar encapsulation is a promising strategy for TME-reprogramming and SWE is a potential biomarker of response.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Neoplasms , Mice , Animals , Micelles , Tumor Microenvironment , Immunotherapy , ortho-Aminobenzoates/pharmacology , ortho-Aminobenzoates/therapeutic use , Immunologic Factors , Polymers
19.
ACS Nano ; 16(8): 12290-12304, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35942986

ABSTRACT

Assessment of drug activation and subsequent interaction with targets in living tissues could guide nanomedicine design, but technologies enabling insight into how a drug reaches and binds its target are limited. We show that a Hoechst-based reporter system can monitor drug release and engagement from a nanoparticle delivery system in vitro and in vivo, elucidating differences in target-bound drug distribution related to drug-linker and nanoparticle properties. Drug engagement is defined as chemical detachment of drug or reporter from a nanoparticle and subsequent binding to a subcellular target, which in the case of Hoechst results in a fluorescence signal. Hoechst-based nanoreporters for drug activation contain prodrug elements such as dipeptide linkers, conjugation handles, and nanoparticle modifications such as targeting ligands to determine how nanomedicine design affects distribution of drug engaged with a subcellular target, which is tracked via cellular nuclear fluorescence in situ. Furthermore, the nanoplatform is amenable toward common maleimide-based linkers found in many prodrug-based delivery systems including polymer-, peptide-, and antibody-drug conjugates. Findings from the Hoechst reporter system were applied to develop highly potent, targeted, anticancer micelle nanoparticles delivering a monomethyl auristatin E (MMAE) prodrug comprising the same linkers employed in Hoechst studies. MMAE nanomedicine with the optimal drug-linker resulted in effective tumor growth inhibition in mice without associated acute toxicity, whereas the nonoptimal linker that showed broader drug activation in Hoechst reporter studies resulted in severe toxicity. Our results demonstrate the potential to synergize direct visualization of drug engagement with nanomedicine drug-linker design to optimize safety and efficacy.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Nanoparticles , Prodrugs , Mice , Animals , Prodrugs/chemistry , Xenograft Model Antitumor Assays , Immunoconjugates/chemistry , Micelles , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Delivery Systems
20.
Pharmaceutics ; 14(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36015325

ABSTRACT

In the last decade, nanomedicine has arisen as an emergent area of medicine, which studies nanometric systems, namely polymeric micelles (PMs), that increase the solubility and the stability of the encapsulated drugs. Furthermore, their application in dermal drug delivery is also relevant. PMs present unique characteristics because of their unique core-shell architecture. They are colloidal dispersions of amphiphilic compounds, which self-assemble in an aqueous medium, giving a structure-type core-shell, with a hydrophobic core (that can encapsulate hydrophobic drugs), and a hydrophilic shell, which works as a stabilizing agent. These features offer PMs adequate steric protection and determine their hydrophilicity, charge, length, and surface density properties. Furthermore, due to their small size, PMs can be absorbed by the intestinal mucosa with the drug, and they transport the drug in the bloodstream until the therapeutic target. Moreover, PMs improve the pharmacokinetic profile of the encapsulated drug, present high load capacity, and are synthesized by a reproducible, easy, and low-cost method. In silico approaches have been explored to improve the physicochemical properties of PMs. Based on this, a computer-aided strategy was developed and validated to enable the delivery of poorly soluble drugs and established critical physicochemical parameters to maximize drug loading, formulation stability, and tumor exposure. Poly(2-oxazoline) (POx)-based PMs display unprecedented high loading concerning water-insoluble drugs and over 60 drugs have been incorporated in POx PMs. Among various stimuli, pH and temperature are the most widely studied for enhanced drug release at the site of action. Researchers are focusing on dual (pH and temperature) responsive PMs for controlled and improved drug release at the site of action. These dual responsive systems are mainly evaluated for cancer therapy as certain malignancies can cause a slight increase in temperature and a decrease in the extracellular pH around the tumor site. This review is a compilation of updated therapeutic applications of PMs, such as PMs that are based on Pluronics®, micelleplexes and Pox-based PMs in several biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...