Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Pharmaceutics ; 16(5)2024 May 04.
Article in English | MEDLINE | ID: mdl-38794280

ABSTRACT

Silybin (SIB) is a hepatoprotective drug known for its poor oral bioavailability, attributed to its classification as a class IV drug with significant metabolism during the first-pass effect. This study explored the potential of solid lipid nanoparticles with (SLN-SIB-U) or without (SLN-SIB) ursodeoxycholic acid and polymeric nanoparticles (PN-SIB) as delivery systems for SIB. The efficacy of these nanosystems was assessed through in vitro studies using the GRX and Caco-2 cell lines for permeability and proliferation assays, respectively, as well as in vivo experiments employing a murine model of Schistosomiasis mansoni infection in BALB/c mice. The mean diameter and encapsulation efficiency of the nanosystems were as follows: SLN-SIB (252.8 ± 4.4 nm, 90.28 ± 2.2%), SLN-SIB-U (252.9 ± 14.4 nm, 77.05 ± 2.8%), and PN-SIB (241.8 ± 4.1 nm, 98.0 ± 0.2%). In the proliferation assay with the GRX cell line, SLN-SIB and SLN-SIB-U exhibited inhibitory effects of 43.09 ± 5.74% and 38.78 ± 3.78%, respectively, compared to PN-SIB, which showed no inhibitory effect. Moreover, SLN-SIB-U demonstrated a greater apparent permeability coefficient (25.82 ± 2.2) than PN-SIB (20.76 ± 0.1), which was twice as high as that of SLN-SIB (11.32 ± 4.6) and pure SIB (11.28 ± 0.2). These findings suggest that solid lipid nanosystems hold promise for further in vivo investigations. In the murine model of acute-phase Schistosomiasis mansoni infection, both SLN-SIB and SLN-SIB-U displayed hepatoprotective effects, as evidenced by lower alanine amino transferase values (22.89 ± 1.6 and 23.93 ± 2.4 U/L, respectively) than those in control groups I (29.55 ± 0.7 U/L) and I+SIB (34.29 ± 0.3 U/L). Among the prepared nanosystems, SLN-SIB-U emerges as a promising candidate for enhancing the pharmacokinetic properties of SIB.

2.
J Pharm Sci ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815860

ABSTRACT

Rotigotine (RTG) is a dopamine agonist used in the treatment of Parkinson's disease. As it is susceptible to oxidation, stability studies must be carefully designed for the identification and characterization of all possible degradation products. Here, RTG degradation was evaluated according to the International Conference on Harmonization guidelines under various stress conditions, including acidic and basic hydrolysis, oxidative, metallic, photolytic, and thermal conditions. Additionally, more severe stress conditions were applied to induce RTG degradation. Significant degradation was only observed under oxidative and photolytic conditions. The samples were analyzed by high performance liquid chromatography coupled to photodiode array detectors, charged aerosol, and high-resolution mass spectrometry. Chromatographic analyses revealed the presence of eight substances related to RTG, four of which were already described and were qualified impurities (impurities B, C, K and E) and four new degradation products (DP-1 - DP-4), whose structures were characterized by high-resolution mass spectrometry through Q-Orbitrap and electrospray ionization. In the stress testing of the active pharmaceutical ingredient in solid form, significant RTG degradation was observed in the presence of the oxidative matrix. The results corroborate the literature that confirm the high susceptibility of RTG to oxidation and the importance of using different detectors to detect degradation products in forced degradation studies.

3.
Curr Med Chem ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38310396

ABSTRACT

INTRODUCTION: Thrombotic disorders are among the leading causes of morbidity and mortality worldwide. Drugs used in the prevention and treatment of atherothrombosis have pharmacokinetic limitations and adverse effects such as hemorrhagic conditions, highlighting the importance of developing more effective antiplatelet agents. ethod: In this work, we synthesized N,N'-disubstituted ureas 3a-3j and evaluated their antiplatelet profiles through in vitro, ex vivo, and in silico studies. The synthesized derivatives exhibited a selective inhibitory profile against platelet aggregation induced by arachidonic acid (AA) in vitro, without significantly affecting other aspects of primary hemostasis and blood coagulation. The compounds that showed inhibition greater than 85% were submitted to the analysis of their potency by calculating the concentration required to inhibit 50% of platelet aggregation induced by AA (IC50). Urea derivative 3a was the most potent with IC50 of 1.45 µM. Interestingly, this derivative inhibited more than 90% of platelet aggregation induced by AA ex vivo, with a similar effect to acetylsalicylic acid. In the hemolysis assay, most of the urea derivatives presented values below 10% suggesting good hemocompatibility. Additionally, the compounds tested at 100 µM also showed no cytotoxic effects in HepG2 and Vero cells. RESULT: The in silico results suggested that compound 3a may bind to the key residue of COX-1 similar to AA and known COX-1 inhibitors, and the results are also in agreement with our SAR, which suggests that the inhibition of this enzyme is the most likely mechanism of antiplatelet activity. CONCLUSION: Therefore, these results demonstrated that N,N'-disubstituted ureas are promising candidates for the development of novel antiplatelet agents.

4.
Curr Pharm Des ; 29(38): 3040-3049, 2023.
Article in English | MEDLINE | ID: mdl-37957861

ABSTRACT

BACKGROUND: Oral suspensions are heterogeneous disperse systems, and the particle size distribution, crystalline form of the dispersed solid, and composition of the formulation can be listed as parameters that control the drug dissolution rate and its bioavailability. OBJECTIVE: The aim of this work was to develop a discriminative dissolution test, which, in association with in silico methodologies, can make it possible to safely anticipate bioavailability problems. METHODS: Nimesulide and ibuprofen (BCS class II) and cephalexin (BCS class I) oral suspensions were studied. Previously, solid-state structure and particle size in active pharmaceutical ingredients were characterized and the impact of differences on solubility was evaluated for the choice of discriminative medium. Afterwards, particle size distribution (0.1 to 360 µm), dissolution profile, and in vitro permeability in Caco-2 cell of commercial suspensions, were determined. These parameters were used as input for the establishment of the in vitro-in vivo correlation (IVIVC) for the suspensions using the GastroPlus™ with Wagner-Nelson and Loo- Riegelmann deconvolution approach. RESULTS: The predicted/observed pharmacokinetic model showed good correlation coefficients (r) of 0.960, 0.950, and 0.901, respectively. The IVIVC was established for one nimesulide and two ibuprofen suspensions with r between 0.956 and 0.932, and the percent prediction error (%PE) did not exceed 15%. CONCLUSION: In this work, we have performed a complete study combining in vitro/in silico approaches with the aim of anticipating the safety and efficacy of oral pharmaceutical suspensions in order to provide a regulatory tool for this category of products in a faster and more economical way.


Subject(s)
Ibuprofen , Sulfonamides , Humans , Biological Availability , Ibuprofen/chemistry , Ibuprofen/pharmacokinetics , Caco-2 Cells , Solubility , Suspensions
5.
Braz Dent J ; 34(3): 119-128, 2023.
Article in English | MEDLINE | ID: mdl-37466519

ABSTRACT

To assess the in vitro and in situ effect of experimental combined fluoride and calcium nanocomposite solutions on dental caries prevention. Nanocompound mesoporous silica (MS) with calcium (Ca) and sodium fluoride (NaF) - (MSCaNaF); MS with NaF (MSNaF), NaF solution (positive control), and deionized water (negative control - CG) were studied. The specimens (n=130) were submitted in vitro to a multispecies biofilm in the presence of 2% sucrose. After 24 h and 48 h, the culture medium pH, the percent of surface mineral loss (%SML), and lesion depth (ΔZ) were analyzed. In the in situ study, 10 volunteers participated in four phases of 7-days each. The products were applied on the specimens (n=240) before 20% sucrose solution drips. The polysaccharides (SEPS and IEPS), %SML and roughness (Sa) were evaluated. There was an in vitro decrease in pH values in 24h and 48h, compared to baseline. The MSCaNaF and MSNaF groups obtained lower values of %SML and ΔZ (p < 0.05) than CG and NaF after 24h and were similar to NaF after 48h (p<0.05). In situ results showed similar SEPS and IEPS among all groups after 48h. An after 7-days, the nanocomposites had similar values (p>0.05), while NaF was similar to CG (p>0.05). After 48h, the MSCaNaF and MSNaF reduced the %SML (p<0.05). After 7-days, both experimental nanocomposites were similar to NaF (p>0.05). Regarding Sa, MSCaNaF was better than NaF for both periods (p<0.05). The nanocomposites controlled the in vitro and in situ enamel demineralization, mainly in the initial periods.


Subject(s)
Dental Caries , Tooth Demineralization , Humans , Fluorides , Dental Caries/prevention & control , Calcium , Cariostatic Agents , Dental Caries Susceptibility , Sodium Fluoride/pharmacology , Sucrose , Tooth Demineralization/prevention & control
6.
Br J Clin Pharmacol ; 89(10): 3175-3194, 2023 10.
Article in English | MEDLINE | ID: mdl-37293836

ABSTRACT

AIMS: To develop paediatric physiologically based pharmacokinetic modelling (PBPK) models of semaglutide to estimate the pharmacokinetic profile for subcutaneous injections in children and adolescents with healthy and obese body weights. METHODS: Pharmacokinetic modelling and simulations of semaglutide subcutaneous injections were performed using the Transdermal Compartmental Absorption & Transit model implemented in GastroPlus v.9.5 modules. A PBPK model of semaglutide was developed and verified in the adult population, by comparing the simulated plasma exposure with the observed data, and further scaled to the paediatric populations with normal and obese body weight. RESULTS: The semaglutide PBPK model was successfully developed in adults and scaled to the paediatric population. Our paediatric PBPK simulations indicated a significant increase in maximum plasma concentrations for the 10-14 years' paediatric population with healthy body weights, which was higher than the observed values in adults at the reference dose. Since gastrointestinal adverse events are related to increased semaglutide concentrations, peak concentrations outside the target range may represent a safety risk for this paediatric age group. Besides, paediatric PBPK models indicated that body weight was inversely related to semaglutide maximum plasma concentration, corroborating the consensus on the influence of body weight on semaglutide PK in adults. CONCLUSION: Paediatric PBPK was successfully achieved using a top-down approach and drug-related parameters. The development of unprecedented PBPK models will support paediatric clinical therapy for applying aid-safe dosing regimens for the paediatric population in diabetes treatment.


Subject(s)
Models, Biological , Obesity , Adult , Child , Humans , Adolescent , Body Weight , Obesity/drug therapy , Computer Simulation
7.
Braz. dent. j ; 34(3): 119-128, May-June 2023. tab, graf
Article in English | LILACS-Express | LILACS, BBO - Dentistry | ID: biblio-1447595

ABSTRACT

Abstract To assess the in vitro and in situ effect of experimental combined fluoride and calcium nanocomposite solutions on dental caries prevention. Nanocompound mesoporous silica (MS) with calcium (Ca) and sodium fluoride (NaF) - (MSCaNaF); MS with NaF (MSNaF), NaF solution (positive control), and deionized water (negative control - CG) were studied. The specimens (n=130) were submitted in vitro to a multispecies biofilm in the presence of 2% sucrose. After 24 h and 48 h, the culture medium pH, the percent of surface mineral loss (%SML), and lesion depth (ΔZ) were analyzed. In the in situ study, 10 volunteers participated in four phases of 7-days each. The products were applied on the specimens (n=240) before 20% sucrose solution drips. The polysaccharides (SEPS and IEPS), %SML and roughness (Sa) were evaluated. There was an in vitro decrease in pH values in 24h and 48h, compared to baseline. The MSCaNaF and MSNaF groups obtained lower values of %SML and ΔZ (p < 0.05) than CG and NaF after 24h and were similar to NaF after 48h (p<0.05). In situ results showed similar SEPS and IEPS among all groups after 48h. An after 7-days, the nanocomposites had similar values (p>0.05), while NaF was similar to CG (p>0.05). After 48h, the MSCaNaF and MSNaF reduced the %SML (p<0.05). After 7-days, both experimental nanocomposites were similar to NaF (p>0.05). Regarding Sa, MSCaNaF was better than NaF for both periods (p<0.05). The nanocomposites controlled the in vitro and in situ enamel demineralization, mainly in the initial periods.

8.
Int J Cosmet Sci ; 45(2): 255-265, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36752036

ABSTRACT

OBJECTIVE: The objective of this work was to develop a self-emulsifying drug delivery system (SEDDS) containing caffeine for the treatment of cellulite. METHODS: SEDDS were prepared using the solution method. 0.5% (w/v) caffeine was added to the previously selected excipients. The system was characterized by droplet size, zeta potential, emulsification time and long-term stability. In vitro release and skin permeation were investigated using Franz-type diffusion cells. The cytotoxicity was evaluated on normal human keratinocytes. RESULTS: Caffeine SEDDS were thermodynamically stable, with a zeta potential less than - 22 mV and droplet size around 30 nm, and were long-term stable. The permeation study showed that the formulation promoted caffeine accumulation in the skin layers, suggesting an increase in local circulation. Cytotoxicity studies on HaCaT cells were not conclusive as the surfactant used indicated false-positive results due to its high molar mass. CONCLUSION: It was possible to obtain a stable SEDDS that could cause an increase in blood flow in the applied area, resulting in cellulite reduction.


OBJECTIF: L'objectif de ce travail était de développer un système d'administration de médicaments auto-émulsifiants (SEDDS) contenant de la caféine pour le traitement de la cellulite. MÉTHODES: Les SEDDS ont été préparés par la méthode en solution. 0,5 % (p/v) de caféine a été ajouté aux excipients préalablement sélectionnés. Le système a été caractérisé par la taille des gouttelettes, le potentiel zêta, le temps d'émulsification et la stabilité à long terme. La libération in vitro et la perméation cutanée ont été étudiées dans des cellules de diffusion de type Franz. La cytotoxicité était évaluée sur des kératinocytes humains normaux. RÉSULTATS: Les SEDDS de caféine étaient thermodynamiquement stables, avec un potentiel Zeta inférieur à -22 mV et une taille de gouttelettes d'environ 30 nm, et stables à long terme. L'étude de perméation a montré que les formulations favorisent l'accumulation de caféine dans les couches de la peau, suggérant une augmentation de la circulation locale. Les études de cytotoxicité sur les cellules HaCaT n'ont pas été concluantes car le surfactant utilisé indique des résultats faussement positifs dus à une masse molaire élevée. CONCLUSION: Il a été possible d'obtenir un SEDDS stable qui peut provoquer une augmentation du flux sanguin dans la zone appliquée, entraînant une réduction de la cellulite.


Subject(s)
Caffeine , Cellulite , Humans , Caffeine/pharmacology , Emulsions , Drug Delivery Systems/methods , Surface-Active Agents , Solubility , Emulsifying Agents
9.
Mini Rev Med Chem ; 23(2): 170-186, 2023.
Article in English | MEDLINE | ID: mdl-35726420

ABSTRACT

Prediction of pulmonary metabolites following inhalation of a locally acting pulmonary drug is essential to the successful development of novel inhaled medicines. The lungs present metabolic enzymes, therefore they influence drug disposal and toxicity. The present review provides an overview of alternative methods to evaluate the pulmonary metabolism for the safety and efficacy of pulmonary delivery systems. In vitro approaches for investigating pulmonary drug metabolism were described, including subcellular fractions, cell culture models and lung slices as the main available in vitro methods. In addition, in silico studies are promising alternatives that use specific software to predict pulmonary drug metabolism, determine whether a molecule will react with a metabolic enzyme, the site of metabolism (SoM) and the result of this interaction. They can be used in an integrated approach to delineate the major cytochrome P450 (CYP) isoforms to rationalize the use of in vivo methods. A case study about a combination of experimental and computational approaches was done using fluticasone propionate as an example. The results of three tested software, RSWebPredictor, SMARTCyp and XenoSite, demonstrated greater probability of the fluticasone propionate being metabolized by CYPs 3A4 at the S1 atom of 5-S-fluoromethyl carbothioate group. As the in vitro studies were not able to directly detect pulmonary metabolites, those alternatives in silico methods may reduce animal testing efforts, following the principle of 3Rs (Replacement, Reduction and Refinement), and contribute to the evaluation of pharmacological efficacy and safety profiles of new drugs in development.


Subject(s)
Cytochrome P-450 Enzyme System , Lung , Animals , Pharmaceutical Preparations/metabolism , Lung/metabolism , Cytochrome P-450 Enzyme System/metabolism , Administration, Inhalation , Fluticasone
10.
Clin Oral Investig ; 27(1): 329-338, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36205787

ABSTRACT

OBJECTIVES: To test 8 models of linear surface roughness assessment in characterizing surface profile description and to correlate these models with equivalent areal parameters over sound human enamel in vitro. MATERIALS AND METHODS: Thirty enamel blocks were randomly selected. The roughness data (2D-Rp; Rv; Rz; Rc; Rt; Ra; Rq; Rsk; Rku/3D-Sp; Sv; Sz; Sa; Sq; Ssk; Sku) was obtained in duplicate in a non-contact 3D optical profilometer. The models were composed by 1 single vertical trace (model 1) until 8 traces (model 8 composed by three vertical traces, three horizontal traces, and two diagonal). RESULTS: The addition of linear sampling traces to the enamel blocks did not result in Rp, Rv, Rz, Rc, Rt, Ra, Rq, Rsk, and Rku value changes (low power-from 5 to 72%). Significant Spearman's correlation coefficients were obtained in most correlation analysis (Rp ↔ Sp; Rv ↔ Sv; Rz ↔ Sz; Ra ↔ Sa; Rq ↔ Sq; and Rku ↔ Sku). CONCLUSIONS: A single vertical trace in the middle of the sample was representative of the overall enamel surface roughness (Rp, Rv, Rz, Rc, Rt, Ra, Rq, Rsk, and Rku) models. The majority of the assessed models in the correlation evaluation presented significant and positive association. CLINICAL RELEVANCE: The findings highlight the applicable model for roughness analysis over human enamel recommended for research and in situ trials assessments.


Subject(s)
Tooth Attrition , Tooth Wear , Humans , Surface Properties , Dental Enamel
11.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36422544

ABSTRACT

BACKGROUND: Current drugs for the treatment of endometriosis are not able to completely cure the condition, and significant side effects hinder the continuation of treatment. Therefore, it is necessary to search for new drug candidates. In the present paper, the use of plant extracts is highlighted. Babassu oil and Copaiba oil resin have several therapeutic properties. We investigated the in vitro effects of two nanoemulsions containing oil extracted from Babassu (Orbignya speciosa) nuts (called SNEDDS-18) and/or oil resin extracted from Copaiba trunk (Copaifera langsdorffii) (called SNEDDS-18/COPA) on cultured human eutopic endometrium stromal cells from endometrial biopsies of patients without (CESC) and with (EuESC) endometriosis as well as human stromal cells from biopsies of endometriotic lesions (EctESC). METHODS: CESC, EuESC, and EctESC were taken and treated with SNEDDS-18 and SNEDDS-18/COPA to evaluate their effects on cytotoxicity, cell morphology, proliferation, and signaling pathways. RESULTS: After 48 h of incubation with SNEDDS-18 and SNEDDS-18/COPA, cell viability and proliferation were inhibited, especially in EctESC. The lowest concentration of both nanoemulsions reduced cell viability and proliferation and broke down the cytoskeleton in EctESCs. After 24 h of treatment a decrease in IL-1, TNF-α, and MCP-1 was observed, as well as an increase in IL-10 production. CONCLUSIONS: Both nanoemulsions can affect endometriotic stromal cell behaviors, thus revealing two potential candidates for new phytotherapeutic agents for the management of endometriosis.

12.
Forensic Sci Int ; 335: 111309, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35462181

ABSTRACT

Cannabis cultivation for medical purposes in Brazil has been increased in the last years. While cannabis crops are prohibited, hundreds patients have been granted with judicial authorizations and there is little information about the cultivation conditions, yields and chemical profiles of the plants. Cannabis plants contain hundreds of compounds, with cannabinoids and terpenes the main drivers of their toxicological and pharmacological properties. Besides the cannabinoids, terpene contents are useful for the chemotaxonomic classification of different varieties, and their role in forensic analyses should be further delineated. The present study monitored cannabis crops of fifteen participants who were granted special licenses by the Brazilian Courts in Rio de Janeiro and São Paulo. The cultivation conditions were monitored and five cannabinoids (tetrahydrocannabinol acid-THCA, tetrahydrocannabinol-THC, cannabidiolic acid-CBDA, cannabidiol-CBD and cannabinol-CBN) and nineteen terpenes were quantified in cannabis flowers. The total grow cycle of thirty-five cannabis plants ranged from 10 to 24 weeks. The dry flower yields ranged 22-90 g per plant. Most cannabis specimens were CBD-rich varieties (CBD levels from 1.6% to 16.7%, and THC levels from 0.0% to 2.6%, n = 22) used to treat epileptic patients. The THC-rich varieties contained CBD levels ranging from 0.03% to 0.8%, and THC levels from 0.7% to 20.1%, n = 11. Fewer of the samples contained THC:CBD ratios of approximately 1:1 (CBD levels of 3.3-3.8% and THC levels of 2.2-3.7%, n = 2). The most abundant terpenes in the cannabis flowers were beta-caryophyllene, alpha-humulene, guaiol and alpha-bisabolol. CBD-rich varieties showed significant higher levels of beta-caryophyllene and alpha-humulene in comparison with THC-rich varieties. Overall, the study herein provides data concerning medical cannabis crops grown in a region of Brazil that not only guide individual medical cannabis cultivation methods but also aid forensic analyses.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Hallucinogens , Medical Marijuana , Analgesics , Brazil , Cannabinoids/analysis , Cannabinol/analysis , Cannabis/chemistry , Dronabinol/analysis , Humans , Terpenes
13.
Crit Rev Anal Chem ; 52(8): 1846-1862, 2022.
Article in English | MEDLINE | ID: mdl-34024199

ABSTRACT

Lopinavir/ritonavir is a potent coformulation of protease inhibitors used against HIV infection. Lopinavir is the main responsible for viral load suppression, whereas ritonavir is a pharmacokinetic enhancer. Both of them have recently gained relevance as candidate drugs against severe coronavirus disease (COVID-19). However, significant beneficial effects were not observed in randomized clinical trials. This review summarizes the main physical-chemical, pharmacodynamic, and pharmacokinetic properties of ritonavir and lopinavir, along with the analytical methodologies applied for biological matrices, pharmaceutical formulations, and stability studies. The work also aimed to provide a comprehensive impurity profile for the combined formulation. Several analytical methods in four different pharmacopeias and 37 articles in literature were evaluated and summarized. Chromatographic methods for these drugs frequently use C8 or C18 stationary phases with acetonitrile and phosphate buffer (with ultraviolet detection) or acetate buffer (with tandem mass spectrometry detection) as the mobile phase. Official compendia methods show disadvantages as extended total run time and complex mobile phases. HPLC tandem-mass spectrometry provided high sensitivity in methodologies applied for human plasma and serum samples, supporting the therapeutic drug monitoring in HIV patients. Ritonavir and lopinavir major degradation products arise in alkaline and acidic environments, respectively. Other non-chromatographic methods were also summarized. Establishing the impurity profile for the combined formulation is challenging due to a large number of impurities reported. Easier and faster analytical methods for impurity assessment are still needed.


Subject(s)
COVID-19 Drug Treatment , HIV Infections , HIV Protease Inhibitors , Humans , Lopinavir/pharmacokinetics , Lopinavir/therapeutic use , Ritonavir/adverse effects , HIV Infections/drug therapy , HIV Infections/chemically induced , HIV Protease Inhibitors/adverse effects , Drug Compounding
14.
Crit Rev Anal Chem ; 52(5): 1078-1093, 2022.
Article in English | MEDLINE | ID: mdl-33347374

ABSTRACT

Ezetimibe (EZM) is a selective inhibitor of the sterol transporter Niemann-Pick C1-Like 1 in the small intestine used as an adjunctive therapy to lower cholesterol levels in cases of hyperlipidemia. The goal of this work was to summarize the main physical-chemical, pharmacological and pharmacokinetic characteristics of EZM, as well as to describe the main analytical methodologies for the quantification of the drug. Methods described in the United States Pharmacopeia for EZM raw material and tablets were also presented. The drug has a large number of process-related impurities and degradation products and needs strict quality control of its impurities. Specific chiral methods for the evaluation of its chiral impurities are also a need for EZM. The main advantages and disadvantages of the compiled analytical methods were presented, as well as the limits of detection and quantitation. The fastest and most efficient methods were highlighted. Most methods for analyzing EZM used C8 or C18 stationary phases in gradient mode with binary mobile phases containing acetonitrile and an acidic buffer solution with ultraviolet detection. For analysis of EZM in biological matrices, liquid chromatography-tandem mass spectrometry is generally employed using electron spray ionization in negative ionization mode using multiple reaction monitoring. Different methods in the literature evaluate a large number of impurities for EZM, however new stability-indicating high-performance liquid chromatography methods for the drug are still needed.


Subject(s)
Ezetimibe , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drug Compounding , Ezetimibe/analysis , Ezetimibe/chemistry , Tablets
15.
Crit Rev Anal Chem ; 52(7): 1524-1536, 2022.
Article in English | MEDLINE | ID: mdl-33678075

ABSTRACT

The third generation of antiepileptic drugs that have been approved by international regulatory agencies between 2007 and 2018 include rufinamide, stiripentol, eslicarbazepine acetate, lacosamide, perampanel, brivaracetam and everolimus. As part of demonstrating their safety profile, stability indicating methods are developed to monitor these drugs and their impurities. In this context, this review describe some characteristics, impurities and the stability indicating methods used for the determination of these drugs and the presence of their related substances. Through a search in official compendia and scientific articles, fifty-six analytical methodologies were identified up to October 2020. The methodologies were developed using techniques of HPLC, UPLC, HPTLC, GC and UV/Vis spectrophotometry. A majority of the methods (∼70%) employed HPLC-UV. A number of these antiepileptic drugs were found to have had a small number of studies related to their stability and for the detection of impurities. The presentation of the current level of research on third generation antiepileptic drugs highlights the need for new stability and safety studies that are necessary to develop new pharmaceutical products containing these drugs.


Subject(s)
Anticonvulsants , Everolimus , Chromatography, High Pressure Liquid , Lacosamide , Pharmaceutical Preparations
16.
Bioorg Med Chem ; 53: 116506, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34890996

ABSTRACT

Tuberculosis (TB) remains a serious public health problem and one of the main concern is the emergence of multidrug-resistant and extensively resistant TB. Hyper-reactive patients develop inflammatory necrotic lung lesions that aggravate the pathology and facilitate transmission of mycobacteria. Treatment of severe TB is a major clinical challenge that has few effective solutions and patients face a poor prognosis, years of treatment and different adverse drug reactions. In this work, fifteen novel and thirty-one unusual thiourea derivatives were synthesized and evaluated in vitro for their antimycobacterial and anti-inflammatory potential and, in silico for ADMET parameters and for structure-activity relationship (SAR). Thioureas derivatives 10, 15, 16, 28 and 29 that had shown low cytotoxicity and high activities were selected for further investigation, after SAR study. These five thioureas derivatives inhibited Mtb H37Rv growth in bacterial culture and in infected macrophages, highlighting thiourea derivative 28 (MIC50 2.0 ± 1.1 and 2.3 ± 1.1 µM, respectively). Moreover, these compounds were active against the hypervirulent clinical Mtb strain M299, in bacterial culture, especially 16, 28 and 29, and in extracellular clumps, highlighting 29, with MIC50 5.6 ± 1.2 µM. Regarding inflammation, they inhibited NO through the suppression of iNOS expression, and also inhibited the production of TNF-α and IL-1ß. In silico studies were carried out suggesting that these five compounds could be administered by oral route and have low toxicological effects when compared to rifampicin. In conclusion, our data show that, at least, thiourea derivatives 16, 28 and 29 are promising antimycobacterial and anti-inflammatory agents, and candidates for further prospective studies aiming new anti-TB drugs, that can be used on a dual approach for the treatment of severe TB cases associated with exacerbated inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Thiourea/pharmacology , Tuberculosis, Pulmonary/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Severity of Illness Index , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry , Tuberculosis, Pulmonary/microbiology
17.
Ars pharm ; 62(4): 358-370, oct.-dic. 2021. tab, graf, ilus
Article in English | IBECS | ID: ibc-216444

ABSTRACT

Introducción: Los productos orales sólidos de liberación inmediata que contienen fármacos muy solubles y perme-ables son candidatos para el proceso de bioexención. Este trabajo tiene como objetivo comparar datos in vitro, in silico e in vivo para establecer si las formulaciones de comprimidos orales de prednisona publicadas anteriormente son candidatas a la bioexención. Método: Para lograr este objetivo se realizaron estudios de permeación en células Caco-2. Se aplicó un estudio de bioequivalencia previo entre la formulación de prueba y el medicamento de referencia en una evaluación in silicoutilizando Gastroplus® para evaluar la bioequivalencia de otras dos formulaciones propuestas anteriormente. Resultados: El coeficiente de permeabilidad aparente para prednisona presentó un valor de 3,69 x 10-5 cm/s en 180 minutos. El estudio de bioequivalencia muestra que el producto probado y de referencia era equivalente. Las simulaciones in silicopredijeron con éxito la farmacocinética de las formulaciones probadas y las otras dos, ya que fueron validadas con el estudioin vivo. Ambos exhiben los mismos perfiles de concentración plasmática frente a tiempo. Conclusiones: A través de los resultadosin silico, es posible inferir que las otras dos formulaciones ensayadas pueden ser bioequivalentes respecto al producto de referencia. Este resultado puede ser útil en la solicitud de bio-exenciones. Para reducir los costos y el uso de seres humanos en los estudios de bioequivalencia, este enfoque podría ser una forma esencial de trabajar en la industria farmacéutica. (AU)


Introduction: The immediate-release solid oral products containing very soluble and permeable drugs are candidates for the biowaiver process. This work aims to compare in vitro, in silico, and in vivo data to establish if previously published prednisone oral tablet formulations are biowaiver candidates. Method: To achieve this goal, permeation studies were conducted on Caco-2 cells. A previous bioequivalence study between the test and the reference drug product was applied on an in silico evaluation using Gastroplus® to assess the bioequivalence of two other previously proposed formulations. Results: The apparent permeability coefficient for prednisone presented a value of 3.69 x 10-5 cm/s in 180 minutes. The bioequivalence study shows that the tested and reference product was equivalent. The in silico simulations successfully predicted the pharmacokinetics of the tested and the other two formulations since they were validated with the in vivo study. Both exhibit the same plasma concentration vs. time profiles. Conclusions: Through the in silico results, it is possible to infer that the other two formulations tested may be bioequivalent concerning the reference product. This result may be helpful in biowaiver requesting. Toward to reduce costs and the use of human beings in bioequivalence studies, this approach could be an essential way to work in the pharmaceutical industry. (AU)


Subject(s)
Humans , Biological Availability , In Vitro Techniques , Prednisone , Caco-2 Cells , Tablets
18.
Braz Dent J ; 32(4): 62-73, 2021.
Article in English | MEDLINE | ID: mdl-34787252

ABSTRACT

This study aimed to evaluate the in vitro effect of a single application of experimental nanocomposite solutions on the prevention of dental caries around orthodontic brackets. The specimens were exposed to mesoporous silica (MS) nanocomposites containing fluoride by association with titanium tetrafluoride (TiF4) or sodium fluoride (NaF). Nanocomposites also could contain calcium and groups were described as MSCaTiF4, MSTiF4, MSCaNaF, MSNaF, and controls (TiF4, and NaF). Specimens were subjected to the formation of a multispecies biofilm to generate a cariogenic challenge. After 24h, both pH and total soluble fluoride concentration of the culture medium were assessed. Mineral loss was evaluated by percentage of surface mineral loss (%SML), mineral volume variation (ΔZ) of inner enamel and polarized light microscopy (PL). Linear (Ra) and volumetric (Sa) surface roughness and scanning electronic microscopy (SEM) were used to assess enamel topography. Statistical analyses were conducted considering p<0.05. MSNaF had the highest value of culture medium pH after cariogenic challenge, similarly to MSTiF4. All nanocomposite solutions released less fluoride than their controls NaF and TiF4 (p<0.05). All nanocomposite solutions presented lower %SML compared to their respective control groups (p<0.05). Lower Ra, Sa and ΔZ were observed for experimental groups compared to TiF4 (p<0.05). The results were confirmed by PL and SEM analysis. The experimental nanocomposite solutions contributed for lower enamel demineralization around orthodontic brackets.


Subject(s)
Dental Caries , Nanocomposites , Orthodontic Brackets , Tooth Demineralization , Cariostatic Agents , Dental Caries/prevention & control , Dental Enamel , Fluorides , Humans , Sodium Fluoride , Titanium
19.
Drug Dev Ind Pharm ; 47(8): 1342-1352, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34622730

ABSTRACT

OBJECTIVE: This work aims to evaluate the ability of biorelevant dissolution media to simulate the bioavailability of efavirenz tablets, establish an in vitro-in vivo relationship (IVIVR) based on in vivo data using GastroPlus® and simulate formulation changes using DDDPlus™. METHODS: Solubility and drug release profiles were conducted in SLS 0.5% and biorelevant media, such as FaSSIF, FeSSIF, FaSSIF-V2, and FeSSIF-V2. The efavirenz physicochemical properties were used to simulate the plasma concentration profile and compare the simulated pharmacokinetic parameters in fasted and fed states. An IVIVR was developed using Loo-Riegelman as the deconvolution method to estimate drug bioavailability. DDDPlus™ was used to perform virtual trials of formulations to evaluate whether formulations changes and the efavirenz particle size could influence the bioavailability. RESULTS: The drug dissolution displayed higher levels in the biorelevant media that simulated gut-fed state (FeSSIF and FeSSIF-V2). The absorption model successfully predicted the efavirenz pharmacokinetics, and FeSSIF-V2 was chosen as the predictive dissolution media, while an IVIVR was established using the Loo-Riegelman deconvolution method. CONCLUSIONS: The present work provides valuable information about efavirenz solubility and kinetics in the gastrointestinal tract, allowing an IVIVR to support future formulation changes. This understanding is essential for rational science-driven formulation development. At least, this study also showed the validity and applicability of in vitro and in silico tools in the regulatory scenario helping on drug development.


Subject(s)
Models, Biological , Alkynes , Benzoxazines , Biological Availability , Computer Simulation , Cyclopropanes , Solubility , Tablets
20.
Braz. dent. j ; 32(4): 62-73, July-Aug. 2021. tab, graf
Article in English | LILACS, BBO - Dentistry | ID: biblio-1345511

ABSTRACT

Abstract This study aimed to evaluate the in vitro effect of a single application of experimental nanocomposite solutions on the prevention of dental caries around orthodontic brackets. The specimens were exposed to mesoporous silica (MS) nanocomposites containing fluoride by association with titanium tetrafluoride (TiF4) or sodium fluoride (NaF). Nanocomposites also could contain calcium and groups were described as MSCaTiF4, MSTiF4, MSCaNaF, MSNaF, and controls (TiF4, and NaF). Specimens were subjected to the formation of a multispecies biofilm to generate a cariogenic challenge. After 24h, both pH and total soluble fluoride concentration of the culture medium were assessed. Mineral loss was evaluated by percentage of surface mineral loss (%SML), mineral volume variation (ΔZ) of inner enamel and polarized light microscopy (PL). Linear (Ra) and volumetric (Sa) surface roughness and scanning electronic microscopy (SEM) were used to assess enamel topography. Statistical analyses were conducted considering p<0.05. MSNaF had the highest value of culture medium pH after cariogenic challenge, similarly to MSTiF4. All nanocomposite solutions released less fluoride than their controls NaF and TiF4 (p<0.05). All nanocomposite solutions presented lower %SML compared to their respective control groups (p<0.05). Lower Ra, Sa and ΔZ were observed for experimental groups compared to TiF4 (p<0.05). The results were confirmed by PL and SEM analysis. The experimental nanocomposite solutions contributed for lower enamel demineralization around orthodontic brackets.


RESUMO Este estudo teve como objetivo avaliar o efeito in vitro de uma única aplicação de soluções experimentais de nanocompósitos na prevenção de cárie dentária em braquetes ortodônticos. Os espécimes foram expostos a nanocompósitos de sílica mesoporosa (MS) contendo fluoreto por associação com tetrafluoreto de titânio (TiF4) ou fluoreto de sódio (NaF). Os nanocompósitos também podem conter cálcio e os grupos foram descritos como MSCaTiF4, MSTiF4, MSCaNaF, MSNaF e controles (TiF4 e NaF). Os espécimes foram submetidos à formação de um biofilme multiespécie para gerar um desafio cariogênico. Após 24h, o pH e a concentração de flúor solúvel total do meio de cultura foram avaliados. A perda mineral foi avaliada pela porcentagem de perda mineral superficial (% SML), variação do volume mineral (ΔZ) do esmalte interno e microscopia de luz polarizada (PL). A rugosidade superficial linear (Ra) e volumétrica (Sa) e a microscopia eletrônica de varredura (MEV) foram utilizadas para avaliar a topografia do esmalte. As análises estatísticas foram realizadas considerando p <0,05. MSNaF apresentou o maior valor de pH do meio de cultura após o desafio cariogênico, semelhante ao MSTiF4. Todas as soluções de nanocompósitos liberaram menos flúor do que seus controles NaF e TiF4 (p <0,05). Todas as soluções de nanocompósitos apresentaram% SML menor em comparação com seus respectivos grupos de controle (p <0,05). Ra, Sa e ΔZ menores foram observados para os grupos experimentais em comparação ao TiF4 (p <0,05). Os resultados foram confirmados por análises PL e SEM. As soluções experimentais de nanocompósitos contribuíram para a menor desmineralização do esmalte ao redor dos braquetes ortodônticos.


Subject(s)
Humans , Tooth Demineralization , Orthodontic Brackets , Dental Caries/prevention & control , Nanocomposites , Sodium Fluoride , Titanium , Cariostatic Agents , Dental Enamel , Fluorides
SELECTION OF CITATIONS
SEARCH DETAIL
...