Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 17(10): 1751-1764, 2023 10.
Article in English | MEDLINE | ID: mdl-37558860

ABSTRACT

While genome sequencing has expanded our knowledge of symbiosis, role assignment within multi-species microbiomes remains challenging due to genomic redundancy and the uncertainties of in vivo impacts. We address such questions, here, for a specialized nitrogen (N) recycling microbiome of turtle ants, describing a new genus and species of gut symbiont-Ischyrobacter davidsoniae (Betaproteobacteria: Burkholderiales: Alcaligenaceae)-and its in vivo physiological context. A re-analysis of amplicon sequencing data, with precisely assigned Ischyrobacter reads, revealed a seemingly ubiquitous distribution across the turtle ant genus Cephalotes, suggesting ≥50 million years since domestication. Through new genome sequencing, we also show that divergent I. davidsoniae lineages are conserved in their uricolytic and urea-generating capacities. With phylogenetically refined definitions of Ischyrobacter and separately domesticated Burkholderiales symbionts, our FISH microscopy revealed a distinct niche for I. davidsoniae, with dense populations at the anterior ileum. Being positioned at the site of host N-waste delivery, in vivo metatranscriptomics and metabolomics further implicate I. davidsoniae within a symbiont-autonomous N-recycling pathway. While encoding much of this pathway, I. davidsoniae expressed only a subset of the requisite steps in mature adult workers, including the penultimate step deriving urea from allantoate. The remaining steps were expressed by other specialized gut symbionts. Collectively, this assemblage converts inosine, made from midgut symbionts, into urea and ammonia in the hindgut. With urea supporting host amino acid budgets and cuticle synthesis, and with the ancient nature of other active N-recyclers discovered here, I. davidsoniae emerges as a central player in a conserved and impactful, multipartite symbiosis.


Subject(s)
Ants , Nitrogen , Animals , Ants/physiology , Phylogeny , Symbiosis/genetics , Urea
2.
FEMS Microbiol Ecol ; 98(8)2022 07 21.
Article in English | MEDLINE | ID: mdl-35660864

ABSTRACT

Gut bacterial symbionts can support animal nutrition by facilitating digestion and providing valuable metabolites. However, changes in symbiotic roles between immature and adult stages are not well documented, especially in ants. Here, we explored the metabolic capabilities of microbiomes sampled from herbivorous turtle ant (Cephalotes sp.) larvae and adult workers through (meta)genomic screening and in vitro metabolic assays. We reveal that larval guts harbor bacterial symbionts with impressive metabolic capabilities, including catabolism of plant and fungal recalcitrant dietary fibers and energy-generating fermentation. Additionally, several members of the specialized adult gut microbiome, sampled downstream of an anatomical barrier that dams large food particles, show a conserved potential to depolymerize many dietary fibers. Symbionts from both life stages have the genomic capacity to recycle nitrogen and synthesize amino acids and B-vitamins. With help of their gut symbionts, including several bacteria likely acquired from the environment, turtle ant larvae may aid colony digestion and contribute to colony-wide nitrogen, B-vitamin and energy budgets. In addition, the conserved nature of the digestive capacities among adult-associated symbionts suggests that nutritional ecology of turtle ant colonies has long been shaped by specialized, behaviorally-transferred gut bacteria with over 45 million years of residency.


Subject(s)
Ants , Gastrointestinal Microbiome , Animals , Bacteria/genetics , Dietary Fiber , Nitrogen , Phylogeny , Symbiosis
3.
Pest Manag Sci ; 77(2): 895-905, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32949089

ABSTRACT

BACKGROUND: Pesticide drift is a serious environmental and safety concern that affects all of US agriculture. A number of mitigation techniques to reduce pesticide drift have been recommended by industry, academic and government agencies. These techniques are very costly or reduce the efficacy of the pest control product and have not been implemented by US agriculture. RESULTS: When using a novel spray technique (Air-in), pesticide drift was significantly reduced by between 53% and 99% at 7.6 m from the orchard drip line when compared to the grower standard. This technique not only reduced pesticide drift, but also maintained or improved the amount of pesticide residue deposited (by 0.7-2.6-fold) and the percentage pesticide coverage (by 1.0-1.4-fold) with different air-blast speed sprayers on almond, walnut and pistachio. CONCLUSION: The Air-in technique shows great promise in reducing pesticide drift while maintaining or improving pesticide coverage with minimal cost to the grower.


Subject(s)
Pesticide Residues , Pesticides , Population Health , Prunus dulcis , Agriculture , Humans , Pesticides/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...