Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Rev. chil. nutr ; 50(6)dic. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1550795

ABSTRACT

Oxidative stress (OS) occurs when the antioxidant defense system is overwhelmed by the predominance of reactive oxygen species (ROS) and pro-oxidant factors. Several diseases such as hypertension, insulin resistance, type 2 diabetes mellitus and neurodegenerative diseases are characterized by chronic OS. Physical exercise constitutes an affordable tool to prevent or ameliorate these conditions. However, during physical activity, acute ROS are produced inducing an activation in peroxisome proliferator activated receptor-Gamma Coactivator-1alpha (PGC-1α), and nuclear factor erythroid-2 related factor 2 (Nrf2), PGC-1α/Nrf2 pathway. This signaling pathway facilitates interaction with antioxidant response elements (ARE), thereby initiating an upregulation in the expression of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and mitochondrial biogenesis. In both cases, whether involving healthy animals or individuals engaged in physical exercise, supplementation with antioxidant scavengers leads to a reduction in the expression and activity of PGC-1α, SOD, CAT, and GPX across various tissues, which is not observed with indirect antioxidants. The preventive role of physical exercise against chronic OS is avoided when executed in conjunction with supplementation of scavenger antioxidants. However, similar to exercise, the indirect antioxidant apigenin can activate the PGC1-α/Nrf2 signaling pathway. Here, we summarize evidence supporting apigenin as a non-nutritional supplement that could enhance the adaptive effects of exercise, improving the endogenous antioxidant defense. Therefore, apigenin could be an interesting supplement to enhance the endogenous antioxidant adaptation induced by exercise in healthy subjects, but also to improve the effectiveness of exercise to prevent oxidative stress-associated diseases.


El estrés oxidativo (OS) ocurre cuando el sistema de defensa antioxidante es sobrepasado por el predominio de especies reactivas de oxígeno (ROS) y factores prooxidantes. Varias enfermedades como la hipertensión, la resistencia a la insulina, la diabetes mellitus tipo 2 y enfermedades neurodegenerativas se caracterizan por un OS crónico. El ejercicio físico constituye una herramienta asequible para prevenir o mejorar estas enfermedades. Sin embargo, durante la actividad física, se producen ROS agudas que inducen una activación en la vía PGC-1α/Nrf2. Esta vía de señalización facilita la interacción con los elementos de respuesta antioxidante (ARE), iniciando así una regulación que permite la expresión de enzimas antioxidantes, incluidas SOD, CAT, GPX y biogénesis mitocondrial. En ambos casos, ya sea que se trate de animales sanos o de individuos que practican ejercicio físico, la suplementación con antioxidantes "scavengers" conduce a una reducción en la expresión y actividad de PGC-1α, SOD, CAT y GPX en varios tejidos, lo que no se observa con antioxidantes "indirectos". El papel preventivo del ejercicio físico contra el OS crónico se atenúa cuando se realiza en conjunto con la suplementación de antioxidantes "scavengers". Sin embargo, de manera similar al ejercicio, la apigenina es un antioxidante "indirecto" que puede activar la vía de señalización PGC1-α/Nrf2. Aquí, resumimos la evidencia que respalda a apigenina como un suplemento no-nutricional que podría mejorar los efectos adaptativos del ejercicio, mejorando la defensa antioxidante endógena de sujetos sanos que no tienen suficiente tiempo para hacer ejercicio.

2.
Nutr Res ; 104: 71-81, 2022 08.
Article in English | MEDLINE | ID: mdl-35635899

ABSTRACT

Advanced glycation end products (AGEs) may be associated with nonalcoholic fatty liver disease (NAFLD) from stimulation of oxidative stress, inflammation, and fibrosis. We hypothesized that patients with NAFLD would have a lower concentration of soluble AGEs receptor and higher quantity of serum and liver AGEs and an increase in hepatic smooth muscle actin alpha (α-SMA) and transforming growth factor beta 1 (TGF-ß1) compared with a control group. We compared the presence of hepatic and serum AGEs, AGE soluble receptor (sRAGE), and markers associated with hepatic damage between NAFLD patients and controls without disease. Histological characteristics, plasma biochemical parameters, serum AGEs, serum receptor sRAGE, and liver proteins (α-SMA, TGF-ß1, AGEs, immunohistochemistry) were assessed in participants aged 18 to 65 years, with NAFLD (simple steatosis [SS]: n = 7; steatohepatitis [NASH]: n = 15) and controls (n = 11). NASH patients presented higher glycated hemoglobin levels (%) (5.7; 5.4-6.3) compared with SS (5.4; 5.2-5.7) and controls (5.4; 5.3-5.5). The NAFLD activity score (NAS) for NASH patients was 4.9 ± 1.3; for SS patients, 2.0 ± 1.0. NASH patients showed higher hepatic AGEs, TGF-ß1, and α-SMA compared with SS and control groups. The NAS score indicates that patients with 5 to 8 had higher hepatic AGEs, TGF-ß1, and α-SMA compared with a NAS of 1 to 4 and 0. For α-SMA, a NAS of 1 to 4 was higher than NAS 0. No difference was found in serum AGEs and sRAGE between groups. Higher hepatic AGEs, TGF-ß1, and α-SMA were observed with increasing disease severity (according to NAS); therefore, endogenous liver AGEs may participate in hepatic damage progression.


Subject(s)
Non-alcoholic Fatty Liver Disease , Biomarkers , Glycation End Products, Advanced , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Transforming Growth Factor beta1/metabolism
3.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638553

ABSTRACT

Low-grade chronic inflammation plays a pivotal role in the pathogenesis of insulin resistance (IR), and skeletal muscle has a central role in this condition. NLRP3 inflammasome activation pathways promote low-grade chronic inflammation in several tissues. However, a direct link between IR and NLRP3 inflammasome activation in skeletal muscle has not been reported. Here, we evaluated the NLRP3 inflammasome components and their role in GLUT4 translocation impairment in skeletal muscle during IR. Male C57BL/6J mice were fed with a normal control diet (NCD) or high-fat diet (HFD) for 8 weeks. The protein levels of NLRP3, ASC, caspase-1, gasdermin-D (GSDMD), and interleukin (IL)-1ß were measured in both homogenized and isolated fibers from the flexor digitorum brevis (FDB) or soleus muscle. GLUT4 translocation was determined through GLUT4myc-eGFP electroporation of the FBD muscle. Our results, obtained using immunofluorescence, showed that adult skeletal muscle expresses the inflammasome components. In the FDB and soleus muscles, homogenates from HFD-fed mice, we found increased protein levels of NLRP3 and ASC, higher activation of caspase-1, and elevated IL-1ß in its mature form, compared to NCD-fed mice. Moreover, GSDMD, a protein that mediates IL-1ß secretion, was found to be increased in HFD-fed-mice muscles. Interestingly, MCC950, a specific pharmacological NLRP3 inflammasome inhibitor, promoted GLUT4 translocation in fibers isolated from the FDB muscle of NCD- and HFD-fed mice. In conclusion, we found increased NLRP3 inflammasome components in adult skeletal muscle of obese insulin-resistant animals, which might contribute to the low-grade chronic metabolic inflammation of skeletal muscle and IR development.


Subject(s)
Glucose Transporter Type 4/metabolism , Inflammasomes/metabolism , Insulin Resistance/physiology , Interleukin-1beta/metabolism , Muscle, Skeletal/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Caspase 1/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Furans/pharmacology , Indenes/pharmacology , Inflammasomes/chemistry , Interleukin-1beta/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Obesity/chemically induced , Obesity/metabolism , Phosphate-Binding Proteins/metabolism , Sulfonamides/pharmacology
4.
Nutrition ; 85: 111139, 2021 05.
Article in English | MEDLINE | ID: mdl-33549947

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the effect of the dietary supplementation of an alpha- and gamma-tocopherol mixture (1:5 ratio) in the adipose tissue expansion, hepatic steatosis, and expression of inflammatory markers induced by consumption of a high-fat diet (HFD) in mice. METHODS: Male C57BL/6 J mice were fed for 12 wk and divided into the following: 1) control diet (CD; 10% fat, 20% protein, 70% carbohydrates); 2) CD + TF (CD plus alpha-tocopherol: 0.7 mg/kg/d, gamma-tocopherol: 3.5 mg/kg/d); 3) HFD (60% fat, 20% protein, 20% carbohydrates); and 4) HFD + TF (HFD plus alpha-tocopherol: 0.7 mg/kg/d, gamma-tocopherol: 3.5 mg/kg/d). General parameters, adipocyte size, liver steatosis, adipose and hepatic tumor necrosis factor-α (TNF-α) and interleukin-1 ß (IL-1ß) expression, hepatic nuclear factor kappa B (NF-κB), and peroxisome proliferator-activated receptor α (PPAR-α) levels were evaluated. RESULTS: Tocopherol supplementation in HFD-fed mice showed a significant decrease in the body weight (19%) and adipose tissue weight (52%), adipose tissue/body weight ratio (36%), and serum triacylglycerols (56%); a 42% decrease (P < 0.05) of adipocyte size compared to HFD; attenuation of liver steatosis by decreasing (P < 0.05) lipid vesicles presence (90%) and total lipid content (75%); and downregulation of inflammatory markers (TNF-α and IL-1ß), along with an upregulation of hepatic PPAR-α expression and its downstream-regulated genes (ACOX and CAT-1), and an inhibition of hepatic NF-κB activation. CONCLUSION: The present study suggests that alpha- and gamma-tocopherol (1:5 ratio) supplementation attenuates the adipocyte enlargement, hepatic steatosis, and metabolic inflammation induced by HFD in association with PPAR-α/NF-κB modulation.


Subject(s)
Diet, High-Fat , Fatty Liver , Adipose Tissue , Animals , Diet, High-Fat/adverse effects , Dietary Supplements , Disease Models, Animal , Fatty Liver/etiology , Fatty Liver/prevention & control , Liver , Male , Mice , Mice, Inbred C57BL , Tissue Expansion , gamma-Tocopherol/pharmacology
5.
Food Funct ; 8(2): 832-841, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28128380

ABSTRACT

Rosa mosqueta (RM) oil is rich in α-linolenic acid (ALA) - a precursor of eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), and it has a high antioxidant activity due to its abundant content of tocopherols. Additionally, it has been observed that RM oil administration prevents hepatic steatosis. Thus, the aim of this study was to demonstrate the antilipogenic mechanism related to RM oil administration in a high-fat diet (HFD) fed mice model by evaluating markers associated with the regulation of lipid droplet metabolism (PLIN2, PLIN5 and PPAR-γ), and proteins associated with lipogenesis (FAS and SREBP-1c). C57BL/6J mice were fed either a control diet or a HFD, with and without RM oil supplementation for 12 weeks. The results showed that RM oil supplementation decreases hepatic PLIN2 and PPAR-γ mRNA expression and SREBP-1c, FAS and PLIN2 protein levels, whereas we did not find changes in the level of PLIN5 among the groups. These results suggest that modulation of lipogenic markers could be one of the mechanisms, through which RM oil supplementation prevents the hepatic steatosis induced by HFD consumption in a mice model.


Subject(s)
Fatty Liver/prevention & control , Plant Oils/administration & dosage , Rosa/chemistry , Animals , Diet, High-Fat/adverse effects , Dietary Supplements/analysis , Fatty Liver/genetics , Fatty Liver/metabolism , Humans , Lipogenesis , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , PPAR gamma/genetics , PPAR gamma/metabolism , Perilipin-2/genetics , Perilipin-2/metabolism , Perilipin-5/genetics , Perilipin-5/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...