Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Trop Anim Health Prod ; 56(3): 109, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509383

ABSTRACT

One of the limitations of implementing animal breeding programs in small-scale or extensive production systems is the lack of production records and genealogical records. In this context, molecular markers could help to gain information for the breeding program. This study addresses the inclusion of molecular data into traditional genetic evaluation models as a random effect by molecular pedigree reconstruction and as a fixed effect by Bayesian clustering. The methods were tested for lactation curve traits in 14 dairy goat herds with incomplete phenotypic data and pedigree information. The results showed an increment of 37.3% of the relationships regarding the originals with MOLCOAN and clustering into five genetic groups. Data leads to estimating additive variance, error variance, and heritability with four different models, including pedigree and molecular information. Deviance Information Criterion (DIC) values demonstrate a greater fitting of the models that include molecular information either as fixed (genetic clusters) or as random (molecular matrix) effects. The molecular information of simple markers can complement genetic improvement strategies in populations with little information.


Subject(s)
Goats , Lactation , Female , Animals , Pedigree , Bayes Theorem , Lactation/genetics , Phenotype , Goats/genetics , Models, Genetic , Milk
2.
J Dairy Sci ; 99(9): 7299-7307, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27423955

ABSTRACT

The κ-casein (CSN-3) and ß-lactoglobulin (BLG) genes are extensively polymorphic in ruminants. Several association studies have estimated the effects of polymorphisms in these genes on milk yield, milk composition, and cheese-manufacturing properties. Usually, these results are based on production integrated over the lactation curve or on cross-sectional studies at specific days in milk (DIM). However, as differential expression of milk protein genes occurs over lactation, the effect of the polymorphisms may change over time. In this study, we fitted a mixed-effects regression model to test-day records of milk yield and milk quality traits (fat, protein, and total solids yields) from Colombian tropical dairy goats. We used the well-characterized A/B polymorphisms in the CSN-3 and BLG genes. We argued that this approach provided more efficient estimators than cross-sectional designs, given the same number and pattern of observations, and allowed exclusion of between-subject variation from model error. The BLG genotype AA showed a greater performance than the BB genotype for all traits along the whole lactation curve, whereas the heterozygote showed an intermediate performance. We observed no such constant pattern for the CSN-3 gene between the AA homozygote and the heterozygote (the BB genotype was absent from the sample). The differences among the genotypic effects of the BLG and the CSN-3 polymorphisms were statistically significant during peak and mid lactation (around 40-160 DIM) for the BLG gene and only for mid lactation (80-145 DIM) for the CSN-3 gene. We also estimated the additive and dominant effects of the BLG locus. The locus showed a statistically significant additive behavior along the whole lactation trajectory for all quality traits, whereas for milk yield the effect was not significant at later stages. In turn, we detected a statistically significant dominance effect only for fat yield in the early and peak stages of lactation (at about 1-45 DIM). The longitudinal analysis of test-day records allowed us to estimate the differential effects of polymorphisms along the lactation curve, pointing toward stages that could be affected by the gene.


Subject(s)
Caseins/genetics , Goats/genetics , Lactation/genetics , Polymorphism, Single Nucleotide , Animals , Caseins/metabolism , Cross-Sectional Studies , Female , Genotype , Genotyping Techniques , Lactoglobulins/genetics , Lactoglobulins/metabolism , Longitudinal Studies , Milk/chemistry , Milk/metabolism , Phenotype , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL