Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Theriogenology ; 171: 30-37, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34004368

ABSTRACT

Although prostaglandins are important in the ovulation process, a precise role for prostaglandin F2α (PGF) has not been elucidated. This study aimed to evaluate the regulation of PGF receptor mRNA (PTGFR) in granulosa cells and the local effect of PGF on ovulation and luteinization. In Experiment 1, using samples collected in vivo before (Day 2), during (Day 3) and after (Day 4) follicular deviation, expression of PTGFR in bovine granulosa cells was more abundant in the dominant follicle after deviation than in subordinates (P < 0.05). However, the expression of PTGFR was not regulated (P = 0.1) in preovulatory follicles at different time-points (0, 3, 6, 12 and 24 h) after ovulation induction with GnRH. In Experiment 2, to assess the role of systemic PGF treatment on luteinization and vascularization of preovulatory follicles, flunixin meglumine (FM), a nonsteroidal anti-inflammatory drug, was used to inhibit endogenous prostaglandin synthesis. Cows with preovulatory follicles were induced to ovulate with GnRH (0 h) and allocated to three groups: Control, with no further treatment; FM, treated with 2.2 mg/kg FM im 17 h after GnRH treatment; and FM + PGF, treated with FM 17 h after GnRH, followed by 25 mg dinoprost tromethamine (PGF) 23 h after GnRH treatment. FM injection was able to reduce the concentration of PGF in the follicular fluid (FF) (P < 0.001). However, contrary to our hypothesis, color Doppler ultrasound evaluations revealed decreased vascular flow in FM + PGF group (P < 0.05), and no effect of the treatments on intrafollicular P4 and E2 concentrations 24 h after GnRH. The prostaglandin metabolite (PGFM) concentrations in the FF were greater in cows receiving systemic PGF (P < 0.001), which prompted us to further check its role on ovulation. Therefore, in Experiment 3, in a final attempt to demonstrate the local effect of PGF on ovulation, cows with preovulatory follicles received an intrafollicular injection (IFI) of PBS (Control) or 100 ng/mL purified PGF (PGF group). PGF treatment did not affect the time of ovulation after IFI (66 ± 6.4 and 63 ± 8.5 h for control and PGF, respectively; P > 0.05), further suggesting that it has no direct effect in the ovulatory process. Based on our findings, we concluded that FM decreased PGF synthesis within the follicle, whereas PGF treatment decreased follicular vascularization. In addition, the in vivo model of intrafollicular injection evidenced that PGF alone is not able to locally induce ovulation.


Subject(s)
Dinoprost , Progesterone , Animals , Cattle , Dinoprost/pharmacology , Female , Gonadotropin-Releasing Hormone/pharmacology , Luteinization , Ovarian Follicle , Ovulation
2.
Theriogenology ; 133: 79-86, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31075714

ABSTRACT

The use of strategies to stimulate follicular growth are important, especially for use in timed artificial insemination (TAI) protocols, aiming to increase dairy cow's fertility. The aim of this study was to investigate the effect of insulin on follicular growth, steroid production and expression of genes related to follicular development. For this, cows were submitted to a progesterone (P4) and estradiol (E2) based synchronization protocol. In study 1, eleven primiparous lactating Holstein cows, received a single s.c. application of 0.25 IU/kg human insulin or no treatment (control) on D8 of the protocol. Blood samples were collected, and the dominant follicle diameter was assessed daily via transrectal ultrasonography, from D8 to D12. In study 2, eight multiparous non-pregnant and non-lactating Jersey cows, received a single s.c. application of 0.25 IU/kg human insulin, whereas cows from the control group received a single s.c. injection (1 mL) of saline solution (NaCl 0.9%). Blood samples were collected, and the dominant follicle diameter was assessed daily via transrectal ultrasonography from D6 to D9 of the protocol. Sixteen hours after insulin injection, follicular aspiration was performed. In study 1, insulin treatment decreased systemic glucose levels, but did not affect follicular growth. In study 2, the glucose decrease induced by insulin treatment was accompanied by a tendency of decreased progesterone levels in follicular fluid, along with a decrease in steroidogenic acute regulatory protein (STAR) and insulin like growth factor binding protein 2 (IGFBP2) mRNA abundance in granulosa cells. In conclusion, insulin treatment does not increase follicle growth and estradiol secretion in dairy cows, but decreases IGFBP2 and tends to increase pappalysin (PAPPA) mRNA abundance in granulosa cells, suggesting a positive effect on follicle development.


Subject(s)
Cattle/metabolism , Granulosa Cells/drug effects , Insulin/pharmacology , Ovarian Follicle/drug effects , Animals , Breeding , Female , Gene Expression/drug effects , Gene Expression Profiling , Humans , Ovarian Follicle/growth & development , Ovulation Induction
SELECTION OF CITATIONS
SEARCH DETAIL