Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Pharm Biomed Anal ; 245: 116174, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703746

ABSTRACT

We present a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying fenfluramine (FFA), its active metabolite norfenfluramine (norFFA), and Epidyolex®, a pure cannabidiol (CBD) oral solution in plasma. Recently approved by the EMA for the adjunctive treatment of refractory seizures in patients with Dravet and Lennox-Gastaut syndromes aged above 2 years, FFA and CBD still do not have established therapeutic blood ranges, and thus need careful drug monitoring to manage potential pharmacokinetic and pharmacodynamic interactions. Our method, validated by ICH guidelines M10, utilizes a rapid extraction protocol from 100 µL of human plasma and a reversed-phase C-18 HPLC column, with deuterated internal standards. The Thermofisher Quantiva triple-quadrupole MS coupled with an Ultimate 3000 UHPLC allowed multiple reaction monitoring detection, ensuring precise analyte quantification. The assay exhibited linear responses across a broad spectrum of concentrations: ranging from 1.64 to 1000 ng/mL for both FFA and CBD, and from 0.82 to 500 ng/mL for norFFA. The method proves accurate and reproducible, free from matrix effect. Additionally, FFA stability in plasma at 4 °C and -20 °C for up to 7 days bolsters its clinical applicability. Plasma concentrations detected in patients samples, expressed as mean ± standard deviation, were 0.36 ± 0.09 ng/mL for FFA, 19.67 ± 1.22 ng/mL for norFFA. This method stands as a robust tool for therapeutic drug monitoring (TDM) of FFA and CBD, offering significant utility in assessing drug-drug interactions in co-treated patients, thus contributing to optimized patient care in complex therapeutic scenarios.


Subject(s)
Cannabidiol , Drug Monitoring , Fenfluramine , Tandem Mass Spectrometry , Humans , Cannabidiol/blood , Cannabidiol/pharmacokinetics , Tandem Mass Spectrometry/methods , Drug Monitoring/methods , Child , Fenfluramine/blood , Chromatography, High Pressure Liquid/methods , Epilepsy/drug therapy , Epilepsy/blood , Reproducibility of Results , Anticonvulsants/blood , Anticonvulsants/pharmacokinetics , Child, Preschool , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry
2.
Clin Biochem ; 125: 110728, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325652

ABSTRACT

Vancomycin is a glycopeptide antibiotic that has been adopted in clinical practice to treat gram-positive infections for more than 70 years. Despite vancomycin's long history of therapeutic use, optimal dose adjustments and pharmacokinetic/pharmacodynamic (PK/PD) target attainment in children are still under debate. Therapeutic drug monitoring (TDM) has been widely integrated into pediatric clinical practice to maximize efficacy and safety of vancomycin treatment. Area under the curve (AUC)-guided TDM has been recently recommended instead of trough-only TDM to ensure PK/PD target attainment of AUC0-24h/minimal inhibitory concentration (MIC) > 400 to 600 and minimize acute kidney injury risk. Bayesian forecasting in pediatric patients allows estimation of population PK to accurately predict individual vancomycin concentrations over time, and consequently total vancomycin exposure. AUC-guided TDM for vancomycin, preferably with Bayesian forecasting, is therefore suggested for all pediatric age groups and special pediatric populations. In this review we aim to analyze the current literature on the pediatric use of vancomycin and summarize the current knowledge on dosing optimization for target attainment in special patient populations.


Subject(s)
Anti-Bacterial Agents , Vancomycin , Humans , Child , Bayes Theorem , Anti-Bacterial Agents/therapeutic use , Area Under Curve , Drug Monitoring , Microbial Sensitivity Tests , Retrospective Studies
3.
J Mass Spectrom Adv Clin Lab ; 31: 33-39, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38304144

ABSTRACT

Therapeutic drug monitoring (TDM) is a critical clinical tool used to optimize the safety and effectiveness of drugs by measuring their concentration in biological fluids. These fluids are primarily plasma or blood. TDM, together with real-time dosage adjustment, contributes highly to the successful management of glycopeptide antimicrobial therapies. Understanding pharmacokinetic/pharmacodynamic (PK/PD) properties is vital for optimizing antimicrobial therapies, as the efficacy of these therapies depends on both the exposure of the patient to the drug (PK) and pharmacodynamic (PD) parameters such as the in vitro estimated minimum drug concentration that inhibits bacterial growth (MIC). Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is widely recognized as the gold standard for measuring small molecules, such as antibiotics. This review provides a comprehensive overview of LC-MS/MS methods available for TDM of glycopeptide antibiotics, including vancomycin, teicoplanin, dalbavancin, oritavancin, and telavancin.

4.
Ther Drug Monit ; 46(1): 67-72, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37752637

ABSTRACT

BACKGROUND: Janus kinase inhibitors are antirheumatic immunosuppressive drugs that target intracellular Janus kinases (JAKs). Baricitinib is a selective and reversible orally administered JAK1/JAK2 inhibitor approved for treating rheumatoid arthritis, atopic dermatitis, and alopecia areata in adult patients. Expanded access to baricitinib has been approved for treating pediatric patients affected by rare Mendelian autoinflammatory diseases with type I interferon-mediated damage. Knowledge of the pharmacokinetic properties and target plasma levels of baricitinib in pediatric patients is limited. In this study, a novel LC-MS/MS method for measuring baricitinib in plasma, validated according to the ICH M10 guidelines, is presented. METHODS: Sample preparation was performed by adding 10 µL of IS working solution (150 ng/mL) and 200 µL of MeOH to each plasma sample. Chromatographic separation was conducted using a Thermo Scientific Accucore Polar Premium column (50 mm × 2.1 mm, i.d. 2.6 m). This method was applied to 7 real anonymous plasma samples obtained from pediatric patients treated with baricitinib at IRCCS Istituto Giannina Gaslini (Genoa, Italy). Patients of both sexes had a median age of 14 years (range, 10-17 years). RESULTS: The LC-MS/MS method resulted linear over wide concentration ranges (1.024-100 ng/mL) and was accurate and reproducible in the absence of matrix effects, allowing for robust, specific, and rapid quantification of baricitinib from a low amount of plasma (50 µL). The plasma concentration of baricitinib in the samples of the patients, expressed as mean ± SD, was 11.25 ± 10.86 ng/mL. CONCLUSIONS: This novel LC-MS/MS method is suitable for the therapeutic drug monitoring of baricitinib and can help guide therapy optimization in pediatric patients.


Subject(s)
Antirheumatic Agents , Janus Kinase Inhibitors , Male , Adult , Female , Humans , Child , Adolescent , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Drug Monitoring , Tandem Mass Spectrometry , Janus Kinase Inhibitors/pharmacokinetics , Janus Kinase Inhibitors/therapeutic use , Antirheumatic Agents/therapeutic use
5.
Biomedicines ; 11(7)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37509602

ABSTRACT

Therapeutic drug monitoring (TDM) is a specialized area of laboratory medicine which involves the measurement of drug concentrations in biological fluids with the aim of optimizing efficacy and reducing side effects, possibly modifying the drug dose to keep the plasma concentration within the therapeutic range. Plasma and/or whole blood, usually obtained by venipuncture, are the "gold standard" matrices for TDM. Microsampling, commonly used for newborn screening, could also be a convenient alternative to traditional sampling techniques for pharmacokinetics (PK) studies and TDM, helping to overcome practical problems and offering less invasive options to patients. Although technical limitations have hampered the use of microsampling in these fields, innovative techniques such as 3-D dried blood spheroids, volumetric absorptive microsampling (VAMS), dried plasma spots (DPS), and various microfluidic devices (MDS) can now offer reliable alternatives to traditional samples. The application of microsampling in routine clinical pharmacology is also hampered by the need for instrumentation capable of quantifying analytes in small volumes with sufficient sensitivity. The combination of microsampling with high-sensitivity analytical techniques, such as liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), is particularly effective in ensuring high accuracy and sensitivity from very small sample volumes. This manuscript provides a critical review of the currently available microsampling devices for both whole blood and other biological fluids, such as plasma, urine, breast milk, and saliva. The purpose is to provide useful information in the scientific community to laboratory personnel, clinicians, and researchers interested in implementing the use of microsampling in their routine clinical practice.

6.
Clin Biochem ; 118: 110613, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37451498

ABSTRACT

Altered direct oral anticoagulant (DOAC) plasma levels can lead either to spontaneous hemorrhagic or thrombotic complications. We describe a case of suspected altered apixaban disposition in a patient with an upper gastrointestinal cancer resection treated with apixaban for non-valvular atrial fibrillation. Diagnosis of ischemic stroke for left hemiparesis was confirmed due to recent emergence of a hypodense area in the posterior capsular nucleus of ischemic reference in a context of binuclear capsular lacunar lesions. Thus, apixaban underexposure was suspected from anamnestic data and oral anticoagulation was switched to parenteral at the next scheduled dose for stroke recurrence. Before switching apixaban pharmacokinetic analysis was performed and unexpectedly showed apixaban plasma overexposure. After 3 days from the switch, the patient experienced spontaneous bleeding complications, for which the risk-benefit profile of continuing anticoagulant treatment for stroke recurrences warranted treatment discontinuation. Unexpected DOAC plasma exposure may present in special patient populations with thrombotic and bleeding complications. Though universally recognized therapeutic ranges have yet to be established for DOACs, periodic drug monitoring may aid in guiding optimization of DOAC therapy and reduce the risk of adverse events in special patient populations.


Subject(s)
Atrial Fibrillation , Stroke , Humans , Rivaroxaban/adverse effects , Dabigatran/adverse effects , Anticoagulants , Hemorrhage/chemically induced , Stroke/drug therapy , Gastrointestinal Tract , Administration, Oral
7.
Biomedicines ; 11(2)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36831066

ABSTRACT

Personalization of busulfan (Bu) exposure via therapeutic drug monitoring (TDM) is recommended for patients treated with high-dose conditioning regimens. Several laboratories' developed methods are available in the literature with a lack of standardization. The aim of this study is to develop a new standardized LC-MS/MS method and validate it according to the international ICH M10 (EMA) guidelines. Our method is based on rapid protein precipitation from 50 µL plasma followed by separation on a reversed-phase C-18 UHPLC column after the addition of deuterated internal standard and has been tested on real samples from pediatric patients treated with myeloablative conditioning regimens, including Bu, before autologous or allogeneic hematopoietic stem cell transplantation (HSCT). The validated LC-MS/MS method is linear over wide concentration ranges (125-2000 ng/mL), accurate, and reproducible in the absence of matrix effects, allowing for the specific and rapid quantification of Bu and allowing next-dose recommendations to be made in a timely fashion to answer clinicians' needs. Given the lack of data on the stability of Bu in real clinical samples, stability was assessed both on quality controls and on real samples to set up a robust protocol in real-life conditions. This novel LC-MS/MS method is suitable for application to the TDM-guided personalization of conditioning treatments with high-dose busulfan in pediatric patients undergoing HSCT.

8.
Biomedicines ; 11(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36831163

ABSTRACT

The new breakthrough cystic fibrosis (CF) drug combination of ivacaftor (IVA), tezacaftor (TEZ), and elexacaftor (ELX), namely "caftor" drugs, directly modulates the activity and trafficking of the defective CF transmembrane conductance regulator protein (CFTR) underlying the CF disease. The role of therapeutic drug monitoring (TDM) of caftor drugs in clinical settings has recently been established. The availability of reliable and robust analytical methods for the quantification of IVA, TEZ, and ELX is essential to support dose-concentration-effect studies. We have developed and validated a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the rapid and simultaneous quantification of IVA, TEZ, and ELX from the plasma of CF patients. The method was based on a rapid extraction protocol from 50 µL human plasma and separation on a reversed-phase C-18 HPLC column after the addition of deuterated internal standards. Accurate analyte quantification using multiple reaction monitoring (MRM) detection was then obtained using a Thermofisher Quantiva triple-quadrupole MS coupled to an Ultimate 3000 UHPLC. The method has been validated following international (EMA) guidelines for bioanalytical method validation and has been tested on plasma samples from 62 CF patients treated with the three-drug combination IVA/TEZ/ELX, marketed as Kaftrio® or Trikafta®, in steady-state condition. The assay was linear over wide concentration ranges (0.008-12 mg/L) in plasma for IVA, TEZ, and ELX, suitable for a broad range of plasma concentrations, and accurate and reproducible in the absence of matrix effects. The stability of analytes for at least 30 days at room temperature could allow for cost-effective shipment and storage. On the same day of sample collection, a sweat test was evaluated for 26 associated patients' samples, FEV1 (%) for 58, and BMI was calculated for 62. However, Spearman correlation showed no correlation between Cthrough plasma concentrations of analytes (IVA, TEZ, ELX) and sweat test, FEV1 (%), or BMI. Our method proved to be suitable for TDM and could be helpful in assessing dose-concentration-response correlations in larger studies.

9.
Front Pharmacol ; 13: 1038754, 2022.
Article in English | MEDLINE | ID: mdl-36353497

ABSTRACT

Cannabidiol (CBD) exhibits anti-inflammatory, anxiolytic, antiseizure, and neuroprotective proprieties without addictive or psychotropic side effects, as opposed to Δ9-tetrahydrocannabinol (THC). While recreational cannabis contains higher THC and lower CBD concentrations, medical cannabis contains THC and CBD in different ratios, along with minor phytocannabinoids, terpenes, flavonoids and other chemicals. A volumetric absorptive microsampling (VAMS) method combined with ultra-high-performance liquid chromatography coupled with mass spectrometry in tandem for quantification of CBD, THC and their respective metabolites: cannabidiol-7-oic acid (7-COOH-CBD); 7-hydroxy-cannabidiol (7-OH-CBD); 6-alpha-hydroxy-cannabidiol (6-α-OH-CBD); and 6-beta-hydroxycannabidiol (6-ß-OH-CBD); 11- Hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH). After overnight enzymatic glucuronide hydrolysis at 37°C, samples underwent acidic along with basic liquid-liquid extraction with hexane: ethyl acetate (9:1, v/v). Chromatographic separation was carried out on a C18 column, with the mass spectrometer operated in multiple reaction monitoring mode and negative electrospray ionization. Seven patients with intractable epilepsy were dosed with various CBD-containing formulations and blood collected just before their daily morning administration. The method was validated following international guidelines in toxicology. Linear ranges were (ng/ml) 0.5-25 THC, 11-OH-THC, THCCOOH, 6-α-OH-CBD and 6-ß-OH-CBD; 10-500 CBD and 7-OH-CBD; and 20-5000 7-COOH-CBD. 7-COOH-CBD was present in the highest concentrations, followed by 7-OH-CBD and CBD. This analytical method is useful for investigating CBD, THC and their major metabolites in epilepsy patients treated with CBD preparations employing a minimally invasive microsampling technique requiring only 30 µL blood.

10.
Front Immunol ; 13: 935957, 2022.
Article in English | MEDLINE | ID: mdl-35898506

ABSTRACT

Deficiency of Adenosine deaminase 2 (DADA2) is a monogenic autoinflammatory disorder presenting with a broad spectrum of clinical manifestations, including immunodeficiency, vasculopathy and hematologic disease. Biallelic mutations in ADA2 gene have been associated with a decreased ADA2 activity, leading to reduction in deamination of adenosine and deoxyadenosine into inosine and deoxyinosine and subsequent accumulation of extracellular adenosine. In the early reports, the pivotal role of innate immunity in DADA2 pathogenic mechanism has been underlined, showing a skewed polarization from the M2 macrophage subtype to the proinflammatory M1 subtype, with an increased production of inflammatory cytokines such as TNF-α. Subsequently, a dysregulation of NETosis, triggered by the excess of extracellular Adenosine, has been implicated in the pathogenesis of DADA2. In the last few years, evidence is piling up that adaptive immunity is profoundly altered in DADA2 patients, encompassing both T and B branches, with a disrupted homeostasis in T-cell subsets and a B-cell skewing defect. Type I/type II IFN pathway upregulation has been proposed as a possible core signature in DADA2 T cells and monocytes but also an increased IFN-ß secretion directly from endothelial cells has been described. So far, a unifying clear pathophysiological explanation for the coexistence of systemic inflammation, immunedysregulation and hematological defects is lacking. In this review, we will explore thoroughly the latest understanding regarding DADA2 pathophysiological process, with a particular focus on dysregulation of both innate and adaptive immunity and their interacting role in the development of the disease.


Subject(s)
Adenosine Deaminase , Polyarteritis Nodosa , Adaptive Immunity , Adenosine , Adenosine Deaminase/genetics , Agammaglobulinemia , Endothelial Cells , Humans , Intercellular Signaling Peptides and Proteins , Severe Combined Immunodeficiency
11.
Biomedicines ; 9(10)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34680495

ABSTRACT

The role of therapeutic drug monitoring (TDM) of valaciclovir (VA)/aciclovir (A) and valganciclovir/ganciclovir (VG/G) in critically ill patients is still a matter of debate. More data on the dose-concentration relationship might therefore be useful, especially in pediatrics where clinical practice is not adequately supported by robust PK studies. We developed and validated a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) micro-method to simultaneously quantify A and G from plasma and dried plasma spots (DPS). The method was based on rapid organic extraction from DPS and separation on a reversed-phase C-18 UHPLC column after addition of deuterated internal standards. Accurate analyte quantification using SRM detection was then obtained using a Thermo Fisher Quantiva triple-quadrupole MS coupled to an Ultimate 3000 UHPLC. It was validated following international (EMA) guidelines for bioanalytical method validation and was tested on samples from pediatric patients treated with A, VG, or G for cytomegalovirus infection following solid organ or hematopoietic stem cell transplantation. Concentrations obtained from plasma and DPS were compared using Passing-Bablok and Bland-Altman statistical tests. The assay was linear over wide concentration ranges (0.01-20 mg/L) in both plasma and DPS for A and G, suitable for the expected therapeutic ranges for both Cmin and Cmax, accurate, and reproducible in the absence of matrix effects. The results obtained from plasma and DPS were comparable. Using an LC-MS/MS method allowed us to obtain a very specific, sensitive, and rapid quantification of these antiviral drugs starting from very low volumes (50 µL) of plasma samples and DPS. The stability of analytes for at least 30 days allows for cost-effective shipment and storage at room temperature. Our method is suitable for TDM and could be helpful for improving knowledge on PK/PD targets of antivirals in critically ill pediatric patients.

12.
Molecules ; 26(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34577178

ABSTRACT

Adenosine Deaminase 2 Deficiency (DADA2) (OMIM: 607575) is a monogenic, autoinflammatory disease caused by the loss of functional homozygous or heterozygous mutations in the ADA 2 gene (previously CECR1, Cat Eye Syndrome Chromosome Region 1). A timely diagnosis is crucial to start Anti-TNF therapies that are efficacious in controlling the disease. The confirmation of DADA2 is based on DNA sequencing and enzymatic assay. It is, thus, very important to have robust and reliable assays that can be rapidly utilized in specialized laboratories that can centralize samples from other centers. In this paper, we show a novel enzymatic assay based on liquid chromatography-tandem mass spectrometry that allows the accurate determination of the ADA2 enzyme activity starting from very small amounts of plasma spotted on filter paper (dried plasma spot). The method allows significantly distinguishing healthy controls from affected patients and carriers and could be of help in implementing the diagnostic workflow of DADA2.


Subject(s)
Adenosine Deaminase/blood , Agammaglobulinemia/diagnosis , Biomarkers/blood , Severe Combined Immunodeficiency/diagnosis , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Adolescent , Adult , Child , Dried Blood Spot Testing , Female , Homozygote , Humans , Male , Middle Aged , Mutation , Phenotype , Tandem Mass Spectrometry , Tumor Necrosis Factor Inhibitors/metabolism
13.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209666

ABSTRACT

Cannabidiol (CBD) is a promising therapeutic agent with analgesic, myorelaxant, and anti-epileptic actions. Recently, a purified form of CBD (Epidiolex®) has been approved by the European Medicines Agency (EMA) for the treatment of two highly-refractory childhood-onset epilepsies (Dravet and Lennox-Gastaut syndrome). Given the interindividual response and the relationship between the dose administered and CBD blood levels, therapeutic drug monitoring (TDM) is a valuable support in the clinical management of patients. We herein report for the first time a newly developed and validated method using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) to evaluate CBD and its metabolites (i.e., cannabidiol-7-oic acid (7-COOH-CBD), 7-hydroxycannabidiol (7-OH-CBD), 6-α-hydroxycannabidiol (6-α-OH-CBD) and 6-ß-hydroxycannabidiol (6-ß-OH-CBD)) in serum samples. The method reached the sensitivity needed to detect minimal amounts of analytes under investigation with limits of quantification ranging from 0.5 to 20 ng/mL. The validation results indicated in this method were accurate (average inter/intra-day error, <15%), precise (inter/intra-day imprecision, <15%), and fast (8 min run time). The method resulted to be linear in the range of 1-10,000 ng/mL for CBD-COOH, 1-500 ng/mL for 7-OH-CBD and CBD and 1-25 ng/mL for 6-α-OH-CBD and 6-ß-OH-CBD. Serum levels of CBD (88.20-396.31 and 13.19-170.63 ng/mL) as well as of 7-OH-CBD (27.11-313.63 and 14.01-77.52 ng/mL) and 7-COOH-CBD (380.32-10,112.23 and 300.57-2851.82 ng/mL) were significantly higher (p < 0.05) in patients treated with GW pharma CBD compared to those of patients treated with galenic preparations. 6-α-OH-CBD and 6-ß-OH-CBD were detected in the first group and were undetectable in the second group. 7-COOH-CBD was confirmed as the most abundant metabolite in serum (5-10 fold higher than CBD) followed by 7-OH-CBD. A significant correlation (p < 0.05) between the dose administrated and a higher bioavailability was confirmed in patients treated with a GW pharma CBD preparation.

14.
Pharmaceuticals (Basel) ; 14(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069020

ABSTRACT

Medical cannabis is increasingly being used in the treatment and support of several diseases and syndromes. The quantitative determination of active ingredients (delta-9 tetrahydrocannabinol, THC, and cannabidiol, CBD) in galenic oily preparations is prescribed by law for each produced batch. The aim of this work is to describe the organization of the titration activity centralized at three regional reference laboratories in Northern Italy. Pre-analytical, analytical, and post-analytical phases have been defined in order to guarantee high quality standards. A cross-validation between laboratories allowed for the definition of the procedures that guarantee the interchangeability between reference laboratories. The risk management protocol adopted can be useful for others who need to undertake this activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...