Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Pediatr Pulmonol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695616

ABSTRACT

BACKGROUND: New York State (NYS) utilizes a three-tiered cystic fibrosis newborn screening (CFNBS) algorithm that includes cystic fibrosis transmembrane conductance regulator (CFTR) gene sequencing. Infants with >1 CFTR variant of potential clinical relevance, including variants of uncertain significance or varying clinical consequence are referred for diagnostic evaluation at NYS cystic fibrosis (CF) Specialty Care Centers (SCCs). AIMS: As part of ongoing quality improvement efforts, demographic, screening, diagnostic, and clinical data were evaluated for 289 CFNBS-positive infants identified in NYS between December 2017 and November 2020 who did not meet diagnostic criteria for CF and were classified as either: CFTR-related metabolic syndrome/CF screen positive, inconclusive diagnosis (CRMS/CFSPID) or CF carriers. RESULTS: Overall, 194/289 (67.1%) had CFTR phasing to confirm whether the infant's CFTR variants were in cis or in trans. Eighteen complex alleles were identified in cis; known haplotypes (p.R117H+5T, p.F508del+p.L467F, and p.R74W+p.D1270N) were the most common identified. Thirty-two infants (16.5%) with all variants in cis were reclassified as CF carriers rather than CRMS/CFSPID. Among 263 infants evaluated at an NYS SCC, 70.3% were reported as having received genetic counseling about their results by any provider, with 96/263 (36.5%) counseled by a certified genetic counselor. CONCLUSION: Given the particularly complex genetic interpretation of results generated by CFNBS algorithms including sequencing analysis, additional efforts are needed to ensure families of infants with a positive CFNBS result have CFTR phasing when needed to distinguish carriers from infants with CRMS/CFSPID, and access to genetic counseling to address implications of CFNBS results.

3.
Mol Genet Metab Rep ; 38: 101037, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38173711

ABSTRACT

The increasing availability of novel therapies highlights the importance of screening newborns for rare genetic disorders so that they may benefit from early therapy, when it is most likely to be effective. Pilot newborn screening (NBS) studies are a way to gather objective evidence about the feasibility and utility of screening, the accuracy of screening assays, and the incidence of disease. They are also an optimal way to evaluate the complex ethical, legal and social implications (ELSI) that accompany NBS expansion for disorders. ScreenPlus is a consented pilot NBS program that aims to enroll over 100,000 infants across New York City. The initial ScreenPlus panel includes 14 disorders and uses an analyte-based, multi-tiered screening platform in an effort to enhance screening accuracy. Infants who receive an abnormal result are referred to a ScreenPlus provider for confirmatory testing, management, and therapy as needed, along with longitudinal capture of outcome data. Participation in ScreenPlus requires parental consent, which is obtained in active and passive manners. Patient-facing documents are translated into the ten most common languages spoken at our nine pilot hospitals, all of which serve diverse communities. At the time of consent, parents are invited to receive a series of online surveys to capture their opinions about specific ELSI-related topics, such as NBS policy, residual dried blood spot retention, and the types of disorders that should be on NBS panels. ScreenPlus has developed a stakeholder-based, collective funding model that includes federal support in addition to funding from 14 advocacy and industry sponsors, all of which have a particular interest in NBS for at least one of the ScreenPlus disorders. Taken together, ScreenPlus is a model, multi-sponsored pilot NBS program that will provide critical data about NBS for a broad panel of disorders, while gathering key stakeholder opinions to help guide ethically sensitive decision-making about NBS expansion.

4.
Mol Genet Metab ; 140(1-2): 107715, 2023.
Article in English | MEDLINE | ID: mdl-37907381

ABSTRACT

Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.


Subject(s)
Genetic Variation , Glycogen Storage Disease Type II , Infant, Newborn , Humans , United States , Genetic Testing/methods , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Genome, Human , Genomics/methods
5.
Clin Biochem ; 118: 110614, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37479106

ABSTRACT

INTRODUCTION: Newborn screening for Duchenne muscular dystrophy can be performed via a first-tier creatine kinase-MM measurement followed by reflex testing to second-tier molecular analysis of the DMD gene. In order to establish appropriate cut-offs for the creatine kinase-MM screen, factors that influence creatine kinase-MM in newborns were investigated. MATERIALS AND METHODS: Creatine kinase-MM data from a consented pilot study in New York State were collected over a two-year period and combined with de-identified validation data and analyzed. Univariate analysis and multiple linear regression analysis were performed. RESULTS: The analysis indicated that age of newborn at specimen collection, gestational age and birth weight were significant influencers of CK-MM levels in newborns. In addition, to a lesser extent, sex, race/ethnicity and seasonal temperature also affect CK-MM levels in newborns. CONCLUSIONS: To reduce false positive and false negative cases, newborn screening programs should be cognizant of factors that influence CK-MM when determining cut-offs for the assay. Variability based on age at specimen collection and birth weight are primarily observed within the first week of life. Therefore, particularly during this time period, multi-tiered cut-offs based on age of collection and lower cut-offs for premature and low birth weight babies are recommended. Other cut-off determinants may include sex, race/ethnicity and seasonal temperature.


Subject(s)
Muscular Dystrophy, Duchenne , Infant , Humans , Infant, Newborn , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Neonatal Screening , Birth Weight , Pilot Projects , Creatine Kinase
6.
Ann Clin Transl Neurol ; 10(8): 1383-1396, 2023 08.
Article in English | MEDLINE | ID: mdl-37350320

ABSTRACT

OBJECTIVE: Duchenne muscular dystrophy (DMD) is an X-linked disorder resulting in progressive muscle weakness and atrophy, cardiomyopathy, and in late stages, cardiorespiratory impairment, and death. As treatments for DMD have expanded, a DMD newborn screening (NBS) pilot study was conducted in New York State to evaluate the feasibility and benefit of NBS for DMD and to provide an early pre-symptomatic diagnosis. METHODS: At participating hospitals, newborns were recruited to the pilot study, and consent was obtained to screen the newborn for DMD. The first-tier screen measured creatine kinase-MM (CK-MM) in dried blood spot specimens submitted for routine NBS. Newborns with elevated CK-MM were referred for genetic counseling and genetic testing. The latter included deletion/duplication analysis and next-generation sequencing (NGS) of the DMD gene followed by NGS for a panel of neuromuscular conditions if no pathogenic variants were detected in the DMD gene. RESULTS: In the two-year pilot study, 36,781 newborns were screened with CK-MM. Forty-two newborns (25 male and 17 female) were screen positive and referred for genetic testing. Deletions or duplications in the DMD gene were detected in four male infants consistent with DMD or Becker muscular dystrophy. One female DMD carrier was identified. INTERPRETATION: This study demonstrated that the state NBS program infrastructure and screening technologies we used are feasible to perform NBS for DMD. With an increasing number of treatment options, the clinical utility of early identification for affected newborns and their families lends support for NBS for this severe disease.


Subject(s)
Muscular Dystrophy, Duchenne , Infant , Humans , Male , Infant, Newborn , Female , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Neonatal Screening/methods , Pilot Projects , Genetic Testing/methods , High-Throughput Nucleotide Sequencing
7.
Am J Med Genet C Semin Med Genet ; 193(1): 44-55, 2023 03.
Article in English | MEDLINE | ID: mdl-36876995

ABSTRACT

This paper focuses on the question of, "When is the best time to identify an individual at risk for a treatable genetic condition?" In this review, we describe a framework for considering the optimal timing for pursuing genetic and genomic screening for treatable genetic conditions incorporating a lifespan approach. Utilizing the concept of a carousel that represents the four broad time periods when critical decisions might be made around genetic diagnoses during a person's lifetime, we describe genetic testing during the prenatal period, the newborn period, childhood, and adulthood. For each of these periods, we describe the objectives of genetic testing, the current status of screening or testing, the near-term vision for the future of genomic testing, the advantages and disadvantages of each approach, and the feasibility and ethical considerations of testing and treating. The notion of a "Genomics Passbook" is one where an early genomic screening evaluation could be performed on each individual through a public health program, with that data ultimately serving as a "living document" that could be queried and/or reanalyzed at prescribed times during the lifetime of that person, or in response to concerns about symptoms of a genetic disorder in that individual.


Subject(s)
Genetic Testing , Longevity , Infant, Newborn , Humans , Child
8.
Int J Neonatal Screen ; 9(1)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36975851

ABSTRACT

Pilot studies to detect newborns with Duchenne Muscular Dystrophy (DMD) by newborn bloodspot screening (NBS) have been conducted under the New York State Newborn Screening Program (NYS) and are currently in progress as part of the Early Check Program at Research Triangle Institute (RTI) International. The Newborn Screening Quality Assurance Program (NSQAP) at the U.S. Centers for Disease Control and Prevention (CDC) produced a set of seven prototype dried blood spot (DBS) reference materials spiked with varying levels of creatine kinase MM isoform (CK-MM). These DBS were evaluated over a 3-week period by CDC, NYS, and RTI, all using the same CK-MM isoform-specific fluoroimmunoassay. Results from each laboratory were highly correlated with the relative proportion of CK-MM added to each of the six spiked pools. Based on reference ranges established by NYS and RTI for their pilot studies, these contrived DBS collectively spanned the CK-MM ranges found in typical newborns and the elevated ranges associated with DMD. This set allows quality assessment over the wide range of fluctuating CK-MM levels in typical and DMD-affected newborns.

9.
Am J Med Genet C Semin Med Genet ; 193(1): 7-12, 2023 03.
Article in English | MEDLINE | ID: mdl-36691939

ABSTRACT

The cost and time needed to conduct whole-genome sequencing (WGS) have decreased significantly in the last 20 years. At the same time, the number of conditions with a known molecular basis has steadily increased, as has the number of investigational new drug applications for novel gene-based therapeutics. The prospect of precision gene-targeted therapy for all seems in reach… or is it? Here we consider practical and strategic considerations that need to be addressed to establish a foundation for the early, effective, and equitable delivery of these treatments.


Subject(s)
Genetic Therapy , Rare Diseases , Humans , Rare Diseases/genetics , Rare Diseases/therapy
10.
J Clin Oncol ; 41(1): 11-21, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35944238

ABSTRACT

Cancer predictive or diagnostic assays, offered as Laboratory-Developed Tests (LDTs), have been subject to regulatory authority and enforcement discretion by the US Food and Drug Administration. Many LDTs enter the market without US Food and Drug Administration or any regulatory review. The Centers for Medicare & Medicaid Services under the Clinical Laboratory Improvement Amendments focuses on analytic performance, but has limited oversight of the quality or utility of LDTs, including whether patients have been harmed as a result of their use. Increasingly, LDTs for cancer risk or early detection have been marketed directly to consumers, with many LDT developers depicting these tests, requested by patients but ordered by personal or company-associated physicians, as procedures falling under the practice of medicine. This patchwork of regulation and enforcement uncertainty regarding LDTs and public concerns about accuracy of tests given emergency authorization during the COVID-19 pandemic led to the Verifying Accurate Leading-edge IVCT (in vitro clinical test) Development Act of 2021. This pending federal legislation represents an opportunity to harmonize regulatory policies and address growing concerns over quality, utility, and safety of LDTs for cancer genomics, including tests marketed directly to consumers. We review here questions regarding the potential benefits and harms of some cancer-related LDTs for cancer risk and presymptomatic molecular diagnosis, increasingly marketed to oncologists or directly to the worried well. We offer specific proposals to strengthen oversight of the accuracy and clinical utility of cancer genetic testing to ensure public safety.


Subject(s)
COVID-19 , Clinical Laboratory Services , Neoplasms , Aged , Humans , United States , COVID-19/prevention & control , Pandemics , Medicare , Neoplasms/diagnosis , Neoplasms/prevention & control , Neoplasms/genetics
11.
Int J Neonatal Screen ; 8(4)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36412584

ABSTRACT

Testing immunoreactive trypsinogen (IRT) is the first step in cystic fibrosis (CF) newborn screening. While high IRT is associated with CF, some cases are missed. This survey aimed to find factors associated with missed CF cases due to IRT levels below program cutoffs. Twenty-nine states responded to a U.S-wide survey and 13 supplied program-related data for low IRT false screen negative cases (CFFN) and CF true screen positive cases (CFTP) for analysis. Rates of missed CF cases and odds ratios were derived for each factor in CFFNs, and two CFFN subgroups, IRT above ("high") and below ("low") the CFFN median (39 ng/mL) compared to CFTPs for this entire sample set. Factors associated with "high" CFFN subgroup were Black race, higher IRT cutoff, fixed IRT cutoff, genotypes without two known CF-causing variants, and meconium ileus. Factors associated with "low" CFFN subgroup were older age at specimen collection, Saturday birth, hotter season of newborn dried blood spot collection, maximum ≥ 3 days laboratories could be closed, preterm birth, and formula feeding newborns. Lowering IRT cutoffs may reduce "high" IRT CFFNs. Addressing hospital and laboratory factors (like training staff in collection of blood spots, using insulated containers during transport and reducing consecutive days screening laboratories are closed) may reduce "low" IRT CFFNs.

12.
Int J Neonatal Screen ; 8(4)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36278620

ABSTRACT

Advancements in therapies for Duchenne muscular dystrophy (DMD) have made diagnosis within the newborn period a high priority. We undertook a consortia approach to advance DMD newborn screening in the United States. This manuscript describes the formation of the Duchenne Newborn Screening Consortium, the development of the pilot protocols, data collection tools including parent surveys, and findings from the first year of a two-year pilot. The DMD pilot design is population-based recruitment of infants born in New York State. Data tools were developed to document the analytical and clinical validity of DMD NBS, capture parental attitudes, and collect longitudinal health information for diagnosed newborns. Data visualizations were updated monthly to inform the consortium on enrollment. After 12 months, 15,754 newborns were screened for DMD by the New York State Newborn Screening (NYS NBS) Program. One hundred and forty screened infants had borderline screening results, and sixteen infants were referred for molecular testing. Three male infants were diagnosed with dystrophinopathy. Data from the first year of a two-year NBS pilot for DMD demonstrate the feasibility of NBS for DMD. The consortia approach was found to be a useful model, and the Newborn Screening Translational Research Network's data tools played a key role in describing the NBS pilot findings and engaging stakeholders.

13.
Am J Med Genet C Semin Med Genet ; 190(2): 197-205, 2022 06.
Article in English | MEDLINE | ID: mdl-36152336

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most common pediatric-onset form of muscular dystrophy, occurring in 1 in 5,000 live male births. DMD is a multi-system disease resulting in muscle weakness with progressive deterioration of skeletal, heart, and smooth muscle, and learning disabilities. Pathogenic/likely pathogenic (P/LP) variants in the DMD gene, which encodes dystrophin protein, cause dystrophinopathy. All males with a P/LP variant in the X-linked DMD gene are expected to be affected. Two to 20% of female heterozygotes with a P/LP variant develop symptoms of dystrophinopathy ranging from mild muscle weakness to significant disability similar to Becker muscular dystrophy. Recently, with improvements in therapies and testing methodology, there is stronger evidence supporting newborn screening (NBS) for DMD for males and females because females may also develop symptoms. A consented pilot study to screen newborns for DMD was initiated in New York State (NYS) and conducted from 2019 to 2021. The identification of female carriers and the realization of the subsequent uncertainty of providers concerning follow-up during the pilot led to the development of algorithms for screening and diagnosis of carrier females, including both NBS and cascade molecular testing of family members.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Child , Male , Infant, Newborn , Female , Humans , Dystrophin/genetics , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Neonatal Screening , Muscle Weakness , Pilot Projects , Algorithms
14.
Front Genet ; 13: 867337, 2022.
Article in English | MEDLINE | ID: mdl-35938011

ABSTRACT

Each year, through population-based newborn screening (NBS), 1 in 294 newborns is identified with a condition leading to early treatment and, in some cases, life-saving interventions. Rapid advancements in genomic technologies to screen, diagnose, and treat newborns promise to significantly expand the number of diseases and individuals impacted by NBS. However, expansion of NBS occurs slowly in the United States (US) and almost always occurs condition by condition and state by state with the goal of screening for all conditions on a federally recommended uniform panel. The Newborn Screening Translational Research Network (NBSTRN) conducted the NBS Expansion Study to describe current practices, identify expansion challenges, outline areas for improvement in NBS, and suggest how models could be used to evaluate changes and improvements. The NBS Expansion Study included a workshop of experts, a survey of clinicians, an analysis of data from online repositories of state NBS programs, reports and publications of completed pilots, federal committee reports, and proceedings, and the development of models to address the study findings. This manuscript (Part One) reports on the design, execution, and results of the NBS Expansion Study. The Study found that the capacity to expand NBS is variable across the US and that nationwide adoption of a new condition averages 9.5 years. Four factors that delay and/or complicate NBS expansion were identified. A companion paper (Part Two) presents a use case for each of the four factors and highlights how modeling could address these challenges to NBS expansion.

15.
JAMA Netw Open ; 5(8): e2227995, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35994287

ABSTRACT

Importance: Serosurveys can be used to monitor population-level dynamics of COVID-19 and vaccination. Dried blood spots (DBSs) collected from infants contain maternal IgG antibodies and are useful for serosurveys of individuals recently giving birth. Objectives: To examine SARS-CoV-2 antibody prevalence in pregnant individuals in New York State, identify associations between SARS-CoV-2 antibody status and maternal and infant characteristics, and detect COVID-19 vaccination among this population. Design, Setting, and Participants: A population-based, repeated cross-sectional study was conducted to detect SARS-CoV-2 nucleocapsid (N) and spike (S) IgG antibodies. Deidentified DBS samples and data submitted to the New York State Newborn Screening Program between November 1, 2019, and November 30, 2021, were analyzed. Exposures: Prenatal exposure to SARS-CoV-2 antibodies. Main Outcomes and Measures: The presence of IgG antibodies to SARS-CoV-2 N and S antigens was measured using a microsphere immunoassay. Data were analyzed by geographic region and compared with reported COVID-19 cases and vaccinations among reproductive-aged females (15-44 years of age). Data were stratified by infant birth weight, gestational age, maternal age, and multiple birth status. Results: Dried blood spot samples from 415 293 infants (median [IQR] age, 1.04 [1.00-1.20] days; 210 805 [51.1%] male) were analyzed for SARS-CoV-2 antibodies. The first known antibody-positive infant in New York State was born on March 29, 2020. SARS-CoV-2 seroprevalence reflected statewide and regional COVID-19 cases among reproductive-aged females in the prevaccine period. From February through November 2021, S seroprevalence was strongly correlated with cumulative vaccinations in each New York State region and in the state overall (rs = 0.92-1.00, P ≤ .001). S and N seroprevalences were significantly lower in newborns with very low birth weight (720 [14.8%] for S and 138 [2.8%] for N, P < .001) and low birth weight (5160 [19.3%] for S and 1233 [4.6%] for N, P = .009) compared with newborns with normal birth weight (77 116 [20.1%] for S and 19 872 [5.2%] for N). Lower N and higher S seroprevalences were observed in multiple births (odds ratio [OR], 0.84; 95% CI, 0.75-0.94; P = .002 for N and OR, 1.24; 95% CI, 1.18-1.31; P < .001 for S) vs single births and for maternal age older than 30 years (OR, 0.87; 95% CI, 0.80-0.94; P < .001 for N and OR, 1.17; 95% CI, 1.11-1.23; P < .001 for S) vs younger than 20 years. Conclusions and Relevance: In this study, seroprevalence in newborn DBS samples reflected COVID-19 case fluctuations and vaccinations among reproductive-aged women during the study period. These results demonstrate the utility of using newborn DBS testing to estimate SARS-CoV-2 seroprevalence in pregnant individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Birth Weight , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Vaccines , Cross-Sectional Studies , Female , Humans , Immunoglobulin G , Infant , Infant, Newborn , Male , New York/epidemiology , Parturition , Pregnancy , Seroepidemiologic Studies
16.
Neurology ; 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35835557

ABSTRACT

BACKGROUND AND OBJECTIVES: Spinal muscular atrophy (SMA) was added to the Recommended Uniform Screening Panel (RUSP) in July 2018, largely on the basis of the availability and efficacy of newly-approved disease modifying therapies. New York State (NYS) started universal newborn screening for SMA in October 2018. The authors report the findings from the first 3 years of screening. METHODS: Statewide neonatal screening was conducted using DNA extracted from dried blood spots using a real-time quantitative polymerase chain reaction (qPCR) assay. Retrospective follow-up data were collected from 9 referral centers across the state on 34 infants. RESULTS: In the first three years since statewide implementation, nearly 650,000 infants have been screened for SMA. 34 babies screened positive and were referred to a neuromuscular specialty care center. The incidence remains lower than previously predicted. The majority (94%), including all infants with 2-3 copies of SMN2, have received treatment. Among treated infants, the overwhelming majority (97%; 29/30) have received gene replacement. All infants in this cohort with 3 copies of SMN2 are clinically asymptomatic post-treatment based on early clinical follow-up data. Infants with 2 copies of SMN2 are more variable in their outcomes. Electrodiagnostic outcomes data from a subgroup of patients (n=11) for whom pre- and post-treatment data demonstrated either improvement or no change in CMAP amplitude at last clinical follow-up compared to pre-treatment baseline. Most infants were treated before 6 weeks of age (median = 34.5 DOL; range 11-180). Delays and barriers to treatment identified by treating clinicians followed two broad themes: medical and non-medical. Medical delays most commonly reported were presence of AAV9 antibodies and elevated troponin I levels. Non-medical barriers included delays in obtaining insurance as well as insurance policies regarding specific treatment modalities. DISCUSSION: The findings from the NYS cohort of newborn screen-identified infants are consistent with other reports of improved outcomes from early diagnosis and treatment. Additional biomarkers of motor neuron health including electromyography can potentially be helpful in detecting pre-clinical decline.

17.
Int J Neonatal Screen ; 8(2)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35466194

ABSTRACT

Seven months after the launch of a pilot study to screen newborns for Duchenne Muscular Dystrophy (DMD) in New York State, New York City became an epicenter of the coronavirus disease 2019 (COVID-19) pandemic. All in-person research activities were suspended at the study enrollment institutions of Northwell Health and NewYork-Presbyterian Hospitals, and study recruitment was transitioned to 100% remote. Pre-pandemic, all recruitment was in-person with research staff visiting the postpartum patients 1-2 days after delivery to obtain consent. With the onset of pandemic, the multilingual research staff shifted to calling new mothers while they were in the hospital or shortly after discharge, and consent was collected via emailed e-consent links. With return of study staff to the hospitals, a hybrid approach was implemented with in-person recruitment for babies delivered during the weekdays and remote recruitment for babies delivered on weekends and holidays, a cohort not recruited pre-pandemic. There was a drop in the proportion of eligible babies enrolled with the transition to fully remote recruitment from 64% to 38%. In addition, the proportion of babies enrolled after being approached dropped from 91% to 55%. With hybrid recruitment, the proportion of eligible babies enrolled (70%) and approached babies enrolled (84%) returned to pre-pandemic levels. Our experience adapting our study during the COVID-19 pandemic led us to develop new recruitment strategies that we continue to utilize. The lessons learned from this pilot study can serve to help other research studies adapt novel and effective recruitment methods.

18.
Int J Neonatal Screen ; 8(2)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35466199

ABSTRACT

Newborn screening (NBS) is an essential public health service that performs screening to identify those newborns at increased risk for a panel of disorders, most of which are genetic. The goal of screening is to link those newborns at the highest risk to timely intervention and potentially life-saving treatment. The global COVID-19 pandemic led to disruptions within the United States public health system, revealing implications for the continuity of newborn screening laboratories and follow-up operations. The impacts of COVID-19 across different states at various time points meant that NBS programs impacted by the pandemic later could benefit from the immediate experiences of the earlier impacted programs. This article will review the collection, analysis, and dissemination of information during the COVID-19 pandemic facilitated by a national, centralized technical assistance and resource center for NBS programs.

19.
Muscle Nerve ; 65(6): 652-658, 2022 06.
Article in English | MEDLINE | ID: mdl-35307847

ABSTRACT

INTRODUCTION/AIMS: Creatine kinase-MM (CK-MM) is a marker of skeletal muscle damage. Detection of elevated levels of CK-MM in newborns can enable an early suspicion of the diagnosis of Duchenne muscular dystrophy (DMD) before symptom onset. Our aim was to investigate CK-MM levels in DMD-affected and unaffected newborns using an immunoassay that measures CK-MM concentration in dried blood spots collected for routine newborn screening. METHODS: To validate the assay in our laboratory, CK-MM measurements and newborn demographic information were collected for 8584 de-identified specimens and 15 confirmed DMD patients. After analyzing validation data, CK-MM normal ranges were determined based on age of newborn at specimen collection. Subsequently, the assay was used to measure CK-MM concentration in 26 135 newborns as part of a consented pilot study to screen for DMD in New York State. Mean and median levels of CK-MM based on age of collection, in addition to the 2.5th, 50th, 97.5th, and 99.5th percentiles, were recalculated using the validation and screening data sets. RESULTS: Median CK-MM within 1 hour of birth was 109 ng/mL, rose to a high of 499 ng/mL at 25 hours of age, and then declined to 200 ng/mL at 2 days of life. The median continued to decline more slowly and then stabilized at approximately 40 ng/mL at 1 week of life. DISCUSSION: Because of the marked variability and elevated CK-MM levels observed within the first days of life, it is important to set multiple CK-MM age-related cut-offs when screening for DMD in newborns.


Subject(s)
Muscular Dystrophy, Duchenne , Creatine Kinase , Humans , Infant, Newborn , Muscular Dystrophy, Duchenne/diagnosis , Neonatal Screening , Pilot Projects , Reference Values
20.
Am J Med Genet A ; 188(4): 1124-1141, 2022 04.
Article in English | MEDLINE | ID: mdl-35107211

ABSTRACT

The biological and clinical significance of the p.E88del variant in the transcobalamin receptor, CD320, is unknown. This allele is annotated in ClinVar as likely benign, pathogenic, and of uncertain significance. To determine functional consequence and clinical relevance of this allele, we employed cell culture and genetic association studies. Fibroblasts from 16 CD320 p.E88del homozygotes exhibited reduced binding and uptake of cobalamin. Complete ascertainment of newborns with transiently elevated C3 (propionylcarnitine) in New York State demonstrated that homozygosity for CD320 p.E88del was over-represented (7/348, p < 6 × 10-5 ). Using population data, we estimate that ~85% of the p.E88del homozygotes born in the same period did not have elevated C3, suggesting that cobalamin metabolism in the majority of these infants with this genotype is unaffected. Clinical follow-up of 4/9 homozygous individuals uncovered neuropsychological findings, mostly in speech and language development. None of these nine individuals exhibited perturbation of cobalamin metabolism beyond the newborn stage even during periods of acute illness. Newborns homozygous for this allele in the absence of other factors are at low risk of requiring clinical intervention, although more studies are required to clarify the natural history of various CD320 variants across patient populations.


Subject(s)
Receptors, Cell Surface , Transcobalamins , Antigens, CD , Genetic Association Studies , Humans , Infant , Infant, Newborn , Receptors, Cell Surface/genetics , Transcobalamins/genetics , Transcobalamins/metabolism , Vitamin B 12/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...