Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gut ; 71(2): 296-308, 2022 02.
Article in English | MEDLINE | ID: mdl-33593807

ABSTRACT

OBJECTIVE: Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic ß-cells producing insulin. Both T1D patients and animal models exhibit gut microbiota and mucosa alterations, although the exact cause for these remains poorly understood. We investigated the production of key cytokines controlling gut integrity, the abundance of segmented filamentous bacteria (SFB) involved in the production of these cytokines, and the respective role of autoimmune inflammation and hyperglycaemia. DESIGN: We used several mouse models of autoimmune T1D as well as mice rendered hyperglycaemic without inflammation to study gut mucosa and microbiota dysbiosis. We analysed cytokine expression in immune cells, epithelial cell function, SFB abundance and microbiota composition by 16S sequencing. We assessed the role of anti-tumour necrosis factor α on gut mucosa inflammation and T1D onset. RESULTS: We show in models of autoimmune T1D a conserved loss of interleukin (IL)-17A, IL-22 and IL-23A in gut mucosa. Intestinal epithelial cell function was altered and gut integrity was impaired. These defects were associated with dysbiosis including progressive loss of SFB. Transfer of diabetogenic T-cells recapitulated these gut alterations, whereas induction of hyperglycaemia with no inflammation failed to do so. Moreover, anti-inflammatory treatment restored gut mucosa and immune cell function and dampened diabetes incidence. CONCLUSION: Our results demonstrate that gut mucosa alterations and dysbiosis in T1D are primarily linked to inflammation rather than hyperglycaemia. Anti-inflammatory treatment preserves gut homeostasis and protective commensal flora reducing T1D incidence.


Subject(s)
Bacteria/isolation & purification , Diabetes Mellitus, Type 1/complications , Dysbiosis/etiology , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Animals , Cytokines/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/microbiology , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Hyperglycemia/etiology , Inflammation/etiology , Intestinal Mucosa/metabolism , Mice
2.
Nat Immunol ; 22(3): 322-335, 2021 03.
Article in English | MEDLINE | ID: mdl-33531712

ABSTRACT

Immune system dysfunction is paramount in coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in cohorts totaling 208 patients with various stages of disease. MAIT cell frequency is strongly reduced in blood. They display a strong activated and cytotoxic phenotype that is more pronounced in lungs. Blood MAIT cell alterations positively correlate with the activation of other innate cells, proinflammatory cytokines, notably interleukin (IL)-18, and with the severity and mortality of severe acute respiratory syndrome coronavirus 2 infection. We also identified a monocyte/macrophage interferon (IFN)-α-IL-18 cytokine shift and the ability of infected macrophages to induce the cytotoxicity of MAIT cells in an MR1-dependent manner. Together, our results suggest that altered MAIT cell functions due to IFN-α-IL-18 imbalance contribute to disease severity, and their therapeutic manipulation may prevent deleterious inflammation in COVID-19 aggravation.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Interleukin-18/immunology , Macrophages/immunology , Monocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , Adult , Aged , Aged, 80 and over , Animals , Bronchoalveolar Lavage , Case-Control Studies , Chlorocebus aethiops , Cohort Studies , Female , France , Humans , Immunophenotyping , Interleukin-10/immunology , Interleukin-15/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Male , Middle Aged , RNA-Seq , SARS-CoV-2 , Severity of Illness Index , Single-Cell Analysis , Vero Cells , Young Adult
3.
Nat Commun ; 11(1): 3755, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32709874

ABSTRACT

Obesity is associated with low-grade chronic inflammation promoting insulin-resistance and diabetes. Gut microbiota dysbiosis is a consequence as well as a driver of obesity and diabetes. Mucosal-associated invariant T cells (MAIT) are innate-like T cells expressing a semi-invariant T cell receptor restricted to the non-classical MHC class I molecule MR1 presenting bacterial ligands. Here we show that during obesity MAIT cells promote inflammation in both adipose tissue and ileum, leading to insulin resistance and impaired glucose and lipid metabolism. MAIT cells act in adipose tissue by inducing M1 macrophage polarization in an MR1-dependent manner and in the gut by inducing microbiota dysbiosis and loss of gut integrity. Both MAIT cell-induced tissue alterations contribute to metabolic dysfunction. Treatment with MAIT cell inhibitory ligand demonstrates its potential as a strategy against inflammation, dysbiosis and metabolic disorders.


Subject(s)
Dysbiosis/immunology , Inflammation/pathology , Intestines/pathology , Mucosal-Associated Invariant T Cells/pathology , Obesity/metabolism , Adipose Tissue/pathology , Animals , Cytokines/genetics , Cytokines/metabolism , Diet, High-Fat , Dysbiosis/complications , Gastrointestinal Microbiome , Glucose Tolerance Test , Ileum/pathology , Inflammation/complications , Intestinal Mucosa/pathology , Intestines/diagnostic imaging , Ligands , Lymphocyte Count , Macrophages/metabolism , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Obesity/complications , Obesity/diagnostic imaging , Phenotype , Pterins/pharmacology , Receptors, Antigen, T-Cell/metabolism
4.
Nat Immunol ; 19(9): 1035, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29880894

ABSTRACT

In the version of this Article originally published, the asterisks indicating statistical significance were missing from Supplementary Figure 6; the file with the correct figure is now available.

5.
Nat Immunol ; 18(12): 1321-1331, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28991267

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic ß-cells by the immune system that involves innate and adaptive immune cells. Mucosal-associated invariant T cells (MAIT cells) are innate-like T-cells that recognize derivatives of precursors of bacterial riboflavin presented by the major histocompatibility complex (MHC) class I-related molecule MR1. Since T1D is associated with modification of the gut microbiota, we investigated MAIT cells in this pathology. In patients with T1D and mice of the non-obese diabetic (NOD) strain, we detected alterations in MAIT cells, including increased production of granzyme B, which occurred before the onset of diabetes. Analysis of NOD mice that were deficient in MR1, and therefore lacked MAIT cells, revealed a loss of gut integrity and increased anti-islet responses associated with exacerbated diabetes. Together our data highlight the role of MAIT cells in the maintenance of gut integrity and the control of anti-islet autoimmune responses. Monitoring of MAIT cells might represent a new biomarker of T1D, while manipulation of these cells might open new therapeutic strategies.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Histocompatibility Antigens Class I/analysis , Intestinal Mucosa/immunology , Minor Histocompatibility Antigens/analysis , Mucosal-Associated Invariant T Cells/immunology , Pancreas/immunology , Animals , Cells, Cultured , Gastrointestinal Microbiome/immunology , Granzymes/biosynthesis , Humans , Insulin-Secreting Cells/immunology , Intestinal Mucosa/cytology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Pancreas/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...