Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biol Rev Camb Philos Soc ; 99(2): 546-561, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38049930

ABSTRACT

Genetic data show that many nominal species are composed of more than one biological species, and thus contain cryptic species in the broad sense (including overlooked species). When ignored, cryptic species generate confusion which, beyond biodiversity or vulnerability underestimation, blurs our understanding of ecological and evolutionary processes and may impact the soundness of decisions in conservation or medicine. However, very few hypotheses have been tested about factors that predispose a taxon to contain cryptic or overlooked species. To fill this gap, we surveyed the literature on free-living marine metazoans and built two data sets, one of 187,603 nominal species and another of 83 classes or phyla, to test several hypotheses, correcting for sequence data availability, taxon size and phylogenetic relatedness. We found a strong effect of scientific history: the probability of a taxon containing cryptic species was highest for the earliest described species and varied among time periods potentially consistently with an influence of prevailing scientific theories. The probability of cryptic species being present was also increased for species with large distribution ranges. They were more frequent in the north polar and south polar zones, contradicting previous predictions of more cryptic species in the tropics, and supporting the hypothesis that many cryptic species diverged recently. The number of cryptic species varied among classes, with an excess in hydrozoans and polychaetes, and a deficit in actinopterygians, for example, but precise class ranking was relatively sensitive to the statistical model used. For all models, biological traits, rather than phylum, appeared responsible for the variation among classes: there were fewer cryptic species than expected in classes with hard skeletons (perhaps because they provide good characters for taxonomy) and image-forming vision (in which selection against heterospecific mating may enhance morphological divergence), and more in classes with internal fertilisation. We estimate that among marine free-living metazoans, several thousand additional cryptic species complexes could be identified as more sequence data become available. The factors identified as important for marine animal cryptic species are likely important for other biomes and taxa and should aid many areas in biology that rely on accurate species identification.


Subject(s)
Biodiversity , Ecosystem , Animals , Phylogeny , Biological Evolution , Models, Statistical
2.
Cureus ; 15(7): e41632, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37565125

ABSTRACT

Twitter has been adopted by physicians across most medical specialties; it allows for the wide dissemination of information and calls to action, brings new stakeholders into collations, promotes academic engagement, and fosters collaboration between academia and private practice. In this review of the literature, we briefly outline the state of advocacy in health care and summarize current Twitter-based advocacy efforts in the major specialties of health care, identifying both successful strategies as well as gaps in Twitter advocacy research. Relevant articles were obtained via PubMed and Google Scholar searches using the phrases "Twitter advocacy healthcare," "[specialty name] Twitter" and "[specialty name] Twitter advocacy." Several overarching themes were found to be widely utilized in specialty-specific discussions of Twitter advocacy efforts: organizing under a specific hashtag, fostering dialogue between stakeholders, and tweeting using personalized, action-oriented language. Fields such as pediatrics, heme/onc, ENT, and ophthalmology have most thoroughly embraced the desire to learn how to most effectively advocate on Twitter. Other fields such as OBGYN, cardiology, and surgery have less academic focus on online advocacy. Outside of advocacy efforts, the research and academic benefits of Twitter are well described in nearly every specialty. In conclusion, while clinicians are encouraged to advocate online, only broad strategies for online engagement are currently offered. Additional research into the details of how to successfully create an online profile and Twitter presence is needed to ensure all physicians are able to maximize their advocacy efforts, with clarification of the goals and objectives of this engagement also required.

4.
PeerJ ; 9: e12378, 2021.
Article in English | MEDLINE | ID: mdl-34820173

ABSTRACT

Inland salt marshes are a rare habitat in North America. Little is known about the invertebrates in these habitats and their ability to cope with the brackish conditions of the marsh. We studied the population growth of ostracods found in an inland salt marsh (Maple River salt marsh) and of copepods found in the wetland habitat immediately adjacent to the freshwater Kalamazoo River. By studying these species in water from both habitats, we aimed to find out if they performed differently in the two habitats. We also tested Daphnia pulex in water from the two habitats due to the history of Daphnia spp. as model organisms. We found that copepods performed better in water taken from the Maple River salt marsh, and the ostracods and D. pulex performed equally well in either water. This was unexpected, since ostracods are found in the salt marsh and copepods in the freshwater area. As a second experiment, we tested the invertebrates in pairwise interactions. In water from the Kalamazoo River, ostracods outperformed the other two species, but there was no difference between D. pulex and copepods. No species outperformed the other in salt marsh water. Our results show no local adaptation to salinity, suggesting that ostracods and copepods may be limited in their respective distributions by dispersal limitation or habitat suitability.

5.
Ecol Evol ; 11(21): 14351-14365, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765111

ABSTRACT

Inland salt marshes are rare habitats in the Great Lakes region of North America, formed on salt deposits from the Silurian period. These patchy habitats are abiotically stressful for the freshwater invertebrates that live there, and provide an opportunity to study the relationship between stress and diversity. We used morphological and COI metabarcoding data to assess changes in diversity and composition across both space (a transect from the salt seep to an adjacent freshwater area) and time (three sampling seasons). Richness was significantly lower at the seep site with both datatypes, while metabarcoding data additionally showed reduced richness at the freshwater transect end, consistent with a pattern where intermediate levels of stress show higher diversity. We found complementary, rather than redundant, patterns of community composition using the two datatypes: not all taxa were equally sequenced with the metabarcoding protocol. We identified taxa that are abundant at the salt seep of the marsh, including biting midges (Culicoides) and ostracods (Heterocypris). We conclude that (as found in other studies) molecular and morphological work should be used in tandem to identify the biodiversity in this rare habitat. Additionally, salinity may be a driver of community membership in this system, though further ecological research is needed to rule out alternate hypotheses.

6.
Mol Ecol ; 29(24): 4882-4897, 2020 12.
Article in English | MEDLINE | ID: mdl-33063375

ABSTRACT

Autonomous Reef Monitoring Structures (ARMS) have been applied worldwide to characterize the critical yet frequently overlooked biodiversity patterns of marine benthic organisms. In order to disentangle the relevance of environmental factors in benthic patterns, here, through standardized metabarcoding protocols, we analyse sessile and mobile (<2 mm) organisms collected using ARMS deployed across six regions with different environmental conditions (3 sites × 3 replicates per region): Baltic, Western Mediterranean, Adriatic, Black and Red Seas, and the Bay of Biscay. A total of 27,473 Amplicon Sequence Variants (ASVs) were observed ranging from 1,404 in the Black Sea to 9,958 in the Red Sea. No ASVs were shared among all regions. The highest number of shared ASVs was between the Western Mediterranean and the Adriatic Sea (116) and Bay of Biscay (115). Relatively high numbers of ASVs (103), mostly associated with the genus Amphibalanus, were also shared between the lower salinity seas (Baltic and Black Seas). We found that compositional differences in spatial patterns of rocky-shore benthos are determined slightly more by dispersal limitation than environmental filtering. Dispersal limitation was similar between sessile and mobile groups, while the sessile group had a larger environmental niche breadth than the mobile group. Further, our study can provide a foundation for future evaluations of biodiversity patterns in the cryptobiome, which can contribute up to 70% of the local biodiversity.


Subject(s)
Aquatic Organisms , Biodiversity , Black Sea , Ecosystem , Environmental Monitoring , Indian Ocean
7.
Mol Phylogenet Evol ; 137: 104-113, 2019 08.
Article in English | MEDLINE | ID: mdl-30951921

ABSTRACT

Ecosystem engineering species alter the physical structure of their environment and can create or modify habitats, having a massive impact on local biodiversity. Coralligenous reefs are highly diverse habitats endemic to the Mediterranean Sea built by calcareous benthic organisms among which Crustose Coralline Algae are the main engineering species. We analyzed the diversity of Lithophyllum stictiforme or L. cabiochiae in coralligenous habitats combining a multiple barcode and a population genomics approach with seascape features. Population genomics allowed disentangling pure spatial effects from environmental effects. We found that these taxa form a complex of eight highly divergent cryptic species that are easily identifiable using classic barcode markers (psbA, LSU, COI). Three factors have a significant effect on the relative abundances of these cryptic species: the location along the French Mediterranean coast, depth and Photosynthetic Active Radiation (PAR). The analysis of around 5000 SNPs for the most abundant species revealed genetic differentiation among localities in the Bay of Marseille but no differentiation between depths within locality. Thus, the effect of depth and PAR on cryptic species communities is not a consequence of restricted connectivity but rather due to differential settlement or survival among cryptic species. This differential is more likely driven by irradiance levels rather than by pressure or temperature. Both the genetic and species diversity patterns are congruent with the main patterns of currents in the Bay. Ecological differentiation among these engineering cryptic species, sensitive to ocean warming and acidification, could have important consequences on the diversity and structure of the coralligenous communities.


Subject(s)
Anthozoa/physiology , Ecosystem , Metagenomics , Rhodophyta/genetics , Animals , Biodiversity , Genetic Variation , Genetics, Population , Haplotypes/genetics , Mediterranean Sea , Phylogeny , Principal Component Analysis , Species Specificity
8.
Mar Pollut Bull ; 141: 420-429, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30955752

ABSTRACT

We investigated the validity of Autonomous Reef Monitoring Structures (ARMS) as monitoring tools for hard bottoms across a wide geographic and environmental range. We deployed 36 ARMS in the northeast Atlantic, northwest Mediterranean, Adriatic and Red Sea at 7-17 m depth. After 12-16 months, community composition was inferred from photographs, in six plate-faces for each ARMS. Overall, we found a highly significant effect of sea region, site (within seas), and plate-face on community composition. Plate-faces thus represent distinct micro-habitats and provide pseudo-replicates, increasing statistical power. Within each sea region taken individually, there was also a highly significant effect of site and plate-face. Because strong effects were obtained despite the fusion of taxonomic categories at high taxonomic ranks (to ensure comparability among biogeographic provinces), ARMS photo-analysis appears a promising monitoring tool for each sea region. We recommend keeping three ARMS per site and analyzing more numerous sites within a sea region to investigate environmental effects.


Subject(s)
Coral Reefs , Environmental Monitoring/methods , Photography , Animals , Atlantic Ocean , Biodiversity , Climate , Geography , Indian Ocean , Mediterranean Sea
9.
Heredity (Edinb) ; 122(6): 770-784, 2019 06.
Article in English | MEDLINE | ID: mdl-30675016

ABSTRACT

The Almeria-Oran Front (AOF) is a recognised hotspot of genetic differentiation in the sea, with genetic discontinuities reported in more than 50 species. The AOF is a barrier to dispersal and an ecological boundary; both can determine the position of these genetic breaks. However, the maintenance of genetic differentiation is likely reinforced by genetic barriers. A general drawback of previous studies is an insufficient density of sampling sites at the transition zone, with a conspicuous lack of samples from the southern coastline. We analysed the fine-scale genetic structure in the mussel Mytilus galloprovincialis using a few ancestry-informative loci previously identified from genome scans. We discovered a 600-km-wide mosaic hybrid zone eastward of the AOF along the Algerian coasts. This mosaic zone provides a new twist to our understanding of the Atlantic-Mediterranean transition because it demonstrates that the two lineages can live in sympatry with ample opportunities to interbreed in a large area, but they hardly do so. This implies that some form of reproductive isolation must exist to maintain the two genetic backgrounds locally cohesive. The mosaic zone ends with an abrupt genetic shift at a barrier to dispersal in the Gulf of Bejaia, Eastern Algeria. Simulations of endogenous or exogenous selection in models that account for the geography and hydrodynamic features of the region support the hypothesis that sister hybrid zones could have been differentially trapped at two alternative barriers to dispersal and/or environmental boundaries, at Almeria in the north and Bejaia in the south. A preponderantly unidirectional north-south gene flow next to the AOF can also maintain a patch of intrinsically maintained genetic background in the south and the mosaic structure, even in the absence of local adaptation. Our results concur with the coupling hypothesis that suggests that natural barriers can explain the position of genetic breaks, while their maintenance depends on genetic barriers.


Subject(s)
Mytilus/genetics , Adaptation, Physiological , Algeria , Animals , Atlantic Ocean , Gene Flow , Geography , Hybridization, Genetic , Mediterranean Sea , Mytilus/physiology
10.
Ecol Evol ; 8(17): 8908-8920, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30271554

ABSTRACT

In a world of declining biodiversity, monitoring is becoming crucial. Molecular methods, such as metabarcoding, have the potential to rapidly expand our knowledge of biodiversity, supporting assessment, management, and conservation. In the marine environment, where hard substrata are more difficult to access than soft bottoms for quantitative ecological studies, Artificial Substrate Units (ASUs) allow for standardized sampling. We deployed ASUs within five regional seas (Baltic Sea, Northeast Atlantic Ocean, Mediterranean Sea, Black Sea, and Red Sea) for 12-26 months to measure the diversity and community composition of macroinvertebrates. We identified invertebrates using a traditional approach based on morphological characters, and by metabarcoding of the mitochondrial cytochrome oxidase I (COI) gene. We compared community composition and diversity metrics obtained using the two methods. Diversity was significantly correlated between data types. Metabarcoding of ASUs allowed for robust comparisons of community composition and diversity, but not all groups were successfully sequenced. All locations were significantly different in taxonomic composition as measured with both kinds of data. We recovered previously known regional biogeographical patterns in both datasets (e.g., low species diversity in the Black and Baltic Seas, affinity between the Bay of Biscay and the Mediterranean). We conclude that the two approaches provide complementary information and that metabarcoding shows great promise for marine monitoring. However, until its pitfalls are addressed, the use of metabarcoding in monitoring of rocky benthic assemblages should be used in addition to classical approaches rather than instead of them.

11.
Mol Ecol ; 26(23): 6563-6577, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29087018

ABSTRACT

Genetic diversity is crucial for species' maintenance and persistence, yet is often overlooked in conservation studies. Species diversity is more often reported due to practical constraints, but it is unknown if these measures of diversity are correlated. In marine invertebrates, adults are often sessile or sedentary and populations exchange genes via dispersal of gametes and larvae. Species with a larval period are expected to have more connected populations than those without larval dispersal. We assessed the relationship between measures of species and genetic diversity, and between dispersal ability and connectivity. We compiled data on genetic patterns and life history traits in nine species across five phyla. Sampling sites spanned 600 km in the northwest Mediterranean Sea and focused on a 50-km area near Marseilles, France. Comparative population genetic approaches yielded three main results. (i) Species without larvae showed higher levels of genetic structure than species with free-living larvae, but the role of larval type (lecithotrophic or planktotrophic) was negligible. (ii) A narrow area around Marseilles, subject to offshore advection, limited genetic connectivity in most species. (iii) We identified sites with significant positive contributions to overall genetic diversity across all species, corresponding with areas near low human population densities. In contrast, high levels of human activity corresponded with a negative contribution to overall genetic diversity. Genetic diversity within species was positively and significantly linearly related to local species diversity. Our study suggests that local contribution to overall genetic diversity should be taken into account for future conservation strategies.


Subject(s)
Animal Distribution , Biodiversity , Genetic Variation , Genetics, Population , Invertebrates/classification , Animals , Aquatic Organisms/classification , Geography , Larva , Mediterranean Sea
12.
PeerJ ; 4: e2295, 2016.
Article in English | MEDLINE | ID: mdl-27547586

ABSTRACT

Larvae of the marine gastropod Crepidula fornicata must complete a transition from the plankton, where they are highly dispersed, to an aggregated group of benthic adults. Previous research has shown that selective settlement of larvae on conspecific adults is mediated by a water-borne chemical cue. However, variable experimental conditions have been used to study this cue, and standardization is needed in order to investigate factors that may have weak effects on settlement. In this study, we developed a time-course bioassay based on a full-factorial design with temporal blocking and statistical analysis of larval settlement rates in the lab. We tested this bioassay by examining settlement in the presence of an abiotic cue (KCl), and biotic cues (water conditioned with adult conspecifics and conspecific pedal mucus). Results confirmed settlement in the presence of both KCl and adult-conditioned water, and discovered the induction of settlement by pedal mucus. This optimized, standardized bioassay will be used in future experiments to characterize the complex process of larval settlement in C. fornicata, particularly to measure components of potentially small effect.

13.
Mol Ecol ; 25(2): 515-26, 2016 01.
Article in English | MEDLINE | ID: mdl-26615052

ABSTRACT

Theory predicts that genetic variation should be reduced at range margins, but empirical support is equivocal. Here, we used genotyping-by-sequencing technology to investigate genetic variation in central and marginal populations of two species in the marine gastropod genus Crepidula. These two species have different development and dispersal types and might therefore show different spatial patterns of genetic variation. Both allelic richness and the proportion of private alleles were highest in the most central populations of both species, and lower at the margin. The species with low dispersal, Crepidula convexa, showed high degrees of structure throughout the range that conform to the pattern found in previous studies using other molecular markers. The northernmost populations of the high-dispersing species, Crepidula fornicata, are distinct from more central populations, although this species has been previously observed to have little genetic structure over much of its range. Although genetic diversity was significantly lower at the range margin, the absolute reduction in diversity observed with these genomewide markers was slight, and it is not yet known whether there are functional consequences for the marginal populations.


Subject(s)
Animal Distribution , Gastropoda/genetics , Genetic Variation , Genetics, Population , Alleles , Animals , Gastropoda/classification , Genotyping Techniques , High-Throughput Nucleotide Sequencing , North America , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
14.
Biol Bull ; 229(3): 276-81, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26695826

ABSTRACT

The protandrous marine snail Crepidula fornicata has been a theoretical and empirical model for studies of sex change for many decades. We investigated the social conditions under which sex change occurs in this species by manipulating physical and chemical contact with conspecifics. Male snails were either in physical and chemical contact with females or in chemical contact with, but physically isolated from, females. Males were tested both with living females and with empty, sterilized shells. Males that were physically touching a living female were less likely to change sex than the isolated controls, while males in chemical (but not physical) contact with females changed sex no slower than the isolated controls. These results provide experimental evidence that the factor controlling sex change in C. fornicata is due to a contact-borne inhibitor associated with female conspecifics. These findings serve as a basis for future studies of sex change in this model system.


Subject(s)
Snails/physiology , Animal Shells , Animals , Female , Hermaphroditic Organisms , Male , Sex Determination Processes
15.
Proc Biol Sci ; 280(1750): 20121890, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23075836

ABSTRACT

Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.


Subject(s)
Climate Change , Extinction, Biological , Biota , Geography , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...