Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Cell Mol Med ; 28(16): e70003, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39153207

ABSTRACT

Pulmonary hypertension (PH) is a chronic progressive vascular disease characterized by abnormal pulmonary vascular resistance and pulmonary artery pressure. The major structural alteration during PH is pulmonary vascular remodelling, which is mainly caused by the imbalance between proliferation and apoptosis of pulmonary vascular cells. Previously, it was thought that apoptosis was the only type of programmed cell death (PCD). Soon afterward, other types of PCD have been identified, including autophagy, pyroptosis, ferroptosis and necroptosis. In this review, we summarize the role of the above five forms of PCD in mediating pulmonary vascular remodelling, and discuss their guiding significance for PH treatment. The current review could provide a better understanding of the correlation between PCD and pulmonary vascular remodelling, contributing to identify new PCD-associated drug targets for PH.


Subject(s)
Apoptosis , Hypertension, Pulmonary , Vascular Remodeling , Humans , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Animals , Necroptosis , Signal Transduction , Autophagy , Ferroptosis , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Pyroptosis
2.
Nanotechnology ; 35(30)2024 May 10.
Article in English | MEDLINE | ID: mdl-38663375

ABSTRACT

In this research, we utilize porous tantalum, known for its outstanding elastic modulus and biological properties, as a base material in biomedical applications. The human skeletal system is rich in elements like Ca and Zn. The role of Zn is crucial for achieving a spectrum of sterilizing effects, while Ca is known to effectively enhance cell differentiation and boost cellular activity. The focus of this study is the modification of porous tantalum using a hydrothermal method to synthesize Ca2+/Zn2+-doped Ta2O5nanorods. These nanorods are subjected to extensive characterization techniques to confirm their structure and composition. Additionally, their biological performance is evaluated through a range of tests, including antibacterial assessments, MTT assays, and bacteria/cell scanning electron microscopy (SEM) analyses. The objective is to determine the most effective method of surface modification for porous tantalum, thereby laying a foundational theoretical framework for its surface enhancement.


Subject(s)
Anti-Bacterial Agents , Calcium , Tantalum , Zinc , Tantalum/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc/chemistry , Zinc/pharmacology , Calcium/chemistry , Humans , Staphylococcus aureus/drug effects , Surface Properties , Porosity , Escherichia coli/drug effects , Microbial Sensitivity Tests
3.
Int J Biol Macromol ; 264(Pt 2): 130770, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467230

ABSTRACT

Traditional adhesives easily release toxic gases during the preparation process or apply to wood composite products, which have adverse effects on the human body and the environment. Herein, an all-water-based high-performance wood adhesive is prepared using TEMPO-oxidized cellulose nanofiber (TOCNF), acrylamide (AM), and tannic acid (TA) through free radical polymerization. Different characteristics of the prepared composites, including morphology, injectability, and adhesion properties, have been investigated. Results showed that the TA/TOCNF/PAM composite has excellent injectability. The addition of TA can enhance the lap shear strength of the TA/TOCNF/PAM composites and with the increment of TA content, the lap shear strength gradually decreases. The formation of effective hydrogen bonds and Van der Waals interaction among the rich functional groups in the composite, lead to strong lap shear strength on different substrates. The composite with 5.0 g of AM, 5.0 g of the TOCNF suspension and 0.1 g TA possesses a high lap shear strength of 10.5 MPa on wood and 1.5 MPa on aluminium. Based on strong adhesion properties and excellent injectability, the TA/TOCNF/PAM composites have great potential in the furniture construction and building industries.


Subject(s)
Cellulose, Oxidized , Nanofibers , Polyphenols , Humans , Adhesives/chemistry , Cellulose/chemistry , Nanofibers/chemistry , Wood/chemistry , Water/analysis , Cellulose, Oxidized/analysis
4.
PLoS One ; 19(3): e0300896, 2024.
Article in English | MEDLINE | ID: mdl-38512808

ABSTRACT

BACKGROUND: Fatigue is a common symptom after viral infection. Chinese herbal medicine (CHM) is thought to be a potential effective intervention in relieving fatigue. PURPOSE: To assess the effectiveness and safety of CHM for the treatment of post-viral fatigue. STUDY DESIGN: Systematic review and meta-analysis of randomized controlled trials (RCTs). METHODS: The protocol of this systematic review was registered on PROSPERO (CRD42022380356). Trials reported changes of fatigue symptom, which compared CHM to no treatment, placebo or drugs, were included. Six electronic databases and three clinical trial registration platforms were searched from inception to November 2023. Literature screening, data extraction, and risk bias assessment were independently carried out by two reviewers. Quality of the included trials was evaluated using Cochrane risk of bias tool, and the certainty of the evidence was evaluated using GRADE. The meta-analysis was performed using Review Manager 5.4, mean difference (MD) and its 95% confidence interval (CI) was used for estimate effect of continuous data. Heterogeneity among trials was assessed through I2 value. RESULTS: Overall, nineteen studies with 1921 patients were included. Results of individual trial or meta-analysis showed that CHM was better than no treatment (MD = -0.80 scores, 95%CI -1.43 to -0.17 scores, P = 0.01, 60 participants, 1 trial), placebo (MD = -1.90 scores, 95%CI -2.38 to -1.42 scores, P<0.00001, 184 participants, 1 trial), placebo on basis of rehabilitation therapy (MD = -14.90 scores, 95%CI -24.53 to -5.27 scores, P = 0.02, 118 participants, 1 trial) or drugs (MD = -0.38 scores, 95%CI -0.48 to -0.27 scores, I2 = 0%, P<0.00001, 498 participants, 4 trials) on relieving fatigue symptoms assessing by Traditional Chinese Medicine fatigue scores. Trials compared CHM plus drugs to drugs alone also showed better effect of combination therapy (average MD = -0.56 scores). In addition, CHM may improve the percentage of CD4 T lymphocytes and reduce the level of serum IL-6 (MD = -14.64 scores, 95%CI 18.36 to -10.91 scores, I2 = 0%, P<0.00001, 146 participants, 2 trials). CONCLUSION: Current systematic review found that the participation of CHM can improve the symptoms of post-viral fatigue and some immune indicators. However, the safety of CHM remains unknown and large sample, high quality multicenter RCTs are still needed in the future.


Subject(s)
Drugs, Chinese Herbal , Fatigue Syndrome, Chronic , Humans , Drugs, Chinese Herbal/therapeutic use , Fatigue/drug therapy , Fatigue/etiology , Fatigue Syndrome, Chronic/drug therapy , Randomized Controlled Trials as Topic
5.
Biomed Mater ; 18(6)2023 10 03.
Article in English | MEDLINE | ID: mdl-37729922

ABSTRACT

This paper focuses on the preparation of Zn2+-doped Ta2O5nanorods on porous tantalum using the hydrothermal method. Porous tantalum is widely used in biomedical materials due to its excellent elastic modulus and biological activity. Porous tantalum has an elastic modulus close to that of human bone, and its large specific surface area is conducive to promoting cell adhesion. Zinc is an important component of human bone, which not only has spectral bactericidal properties, but also has no cytotoxicity. The purpose of this study is to provide a theoretical basis for the surface modification of porous tantalum and to determine the best surface modification method. The surface structure of the sample was characterized by x-ray diffractometer, x-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, and the Zn-doped Ta2O5nanorods are characterized by antibacterial test, MTT test, ICP and other methods. The sample has good antibacterial properties and no cytotoxicity. The results of this study have potential implications for the development of new and improved biomedical materials.


Subject(s)
Nanotubes , Tantalum , Humans , Porosity , Tantalum/chemistry , Zinc , Biocompatible Materials , Surface Properties
6.
Sci Rep ; 13(1): 11389, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452128

ABSTRACT

To address the increasing environmental footprint of the fast-growing textile industry, self-repairing textile composites have been developed to allow torn or damaged textiles to restore their morphological, mechanical, and functional features. A sustainable way to create these textile composites is to introduce a coating material that is biologically derived, biodegradable, and can be produced through scalable processes. Here, we fabricated self-repairing textile composites by integrating the biofilms of Escherichia coli (E. coli) bacteria into conventional knitted textiles. The major structural protein component in E. coli biofilm is a matrix of curli fibers, which has demonstrated extraordinary abilities to self-assemble into mechanically strong macroscopic structures and self-heal upon contact with water. We demonstrated the integration of biofilm through three simple, fast, and scalable methods: adsorption, doctor blading, and vacuum filtration. We confirmed that the composites were breathable and mechanically strong after the integration, with improved Young's moduli or elongation at break depending on the fabrication method used. Through patching and welding, we showed that after rehydration, the composites made with all three methods effectively healed centimeter-scale defects. Upon observing that the biofilm strongly attached to the textiles by covering the extruding textile fibers from the self-repair failures, we proposed that the strength of the self-repairs relied on both the biofilm's cohesion and the biofilm-textile adhesion. Considering that curli fibers are genetically-tunable, the fabrication of self-repairing curli-expressing biofilm-textile composites opens new venues for industrially manufacturing affordable, durable, and sustainable functional textiles.


Subject(s)
Escherichia coli , Textiles , Bacteria , Biofilms , Fimbriae, Bacterial
7.
Inorg Chem ; 62(12): 4960-4970, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36908061

ABSTRACT

The development of multifunctional and durable electrocatalysts for hydrogen energy production via an energy-saving avenue is urgently desired. Urea electrolysis by substituting the oxygen evolution reaction (OER) with a more oxidizable urea oxidation reaction (UOR) has been widely used to realize energy-saving hydrogen production. Herein, metal-organic framework (MOF)-derived interface-engineered NiMoO4@NiFeP core-shell nanorods as electrocatalysts are constructed. Due to the integration of the advantages of the interface synergistic effect between the NiMoO4 core and NiFeP shell, the as-fabricated NiMoO4@NiFeP electrocatalyst demonstrates remarkable electrocatalytic performance toward the hydrogen evolution reaction (HER), OER, and UOR. In the urea electrolysis system, an ultralow cell voltage of 1.30 V is needed to drive the current density of 10 mA cm-2, which is 140 mV lower than that of the conventional overall water splitting system. The cost-efficient and high-performance NiMoO4@NiFeP electrocatalyst paves the way to explore practical applications of energy-saving hydrogen production.

8.
ChemSusChem ; 16(10): e202300021, 2023 May 19.
Article in English | MEDLINE | ID: mdl-36799094

ABSTRACT

Photocatalysis is a promising and sustainable technology in the fields of energy conversion/storage and environment purification; however, the utilization of individual component as photocatalyst is generally restricted due to the low catalytic activity deriving from the rapid recombination of photogenerated electrons/holes. Covalent organic framework (COF)-semiconductor-based composite photocatalysts with synergistic effects provide a feasible route to achieve high-performance photocatalytic reactions with more active sites, strong light utilization ability, and high stability. In recent years, significant progress has been made in the rational design and preparation of the COF-semiconductors-based heterostructures for photocatalytic water splitting, carbon dioxide (CO2 ) reduction, and dye/pollutant degradation. In this Review, the synthetic strategies of COF-semiconductor-based heterostructures are first introduced, which includes the rational design of the morphology, connection modes, and type of heterojunctions. The performance of COF-semiconductor-based heterostructures in different photocatalytic reactions are comprehensively reviewed. The structure-activity relationship and the synergistic effects within the heterostructures are discussed, and the photocatalytic mechanism and the role of COFs during the photocatalytic process are also presented. Finally, an outlook and challenges of realizing COF-semiconductor-based heterostructures with simple synthesis methods, diverse functions, high performance, and well-defined reaction mechanisms are provided.

9.
ACS Biomater Sci Eng ; 9(5): 2020-2047, 2023 05 08.
Article in English | MEDLINE | ID: mdl-34491052

ABSTRACT

Sweat is an increasingly popular biological medium for fitness monitoring and clinical diagnostics. It contains an abundance of biological information and is available continuously and noninvasively. Sweat-sensing devices often employ proteins in various capacities to create skin-friendly matrices that accurately extract valuable and time-sensitive information from sweat. Proteins were first used in sensors as biorecognition elements in the form of enzymes and antibodies, which are now being tuned to operate at ranges relevant for sweat. In addition, a range of structural proteins, sometimes assembled in conjunction with polymers, can provide flexible and compatible matrices for skin sensors. Other proteins also naturally possess a range of functionalities─as adhesives, charge conductors, fluorescence emitters, and power generators─that can make them useful components in wearable devices. Here, we examine the four main components of wearable sweat sensors─the biorecognition element, the transducer, the scaffold, and the adhesive─and the roles that proteins have played so far, or promise to play in the future, in each component. On a case-by-case basis, we analyze the performance characteristics of existing protein-based devices, their applicable ranges of detection, their transduction mechanism and their mechanical properties. Thereby, we review and compare proteins that can readily be used in sweat sensors and others that will require further efforts to overcome design, stability or scalability challenges. Incorporating proteins in one or multiple components of sweat sensors could lead to the development and deployment of tunable, greener, and safer biosourced devices.


Subject(s)
Biosensing Techniques , Sweat , Wearable Electronic Devices , Humans , Animals , Proteins , Sweat/chemistry , Monitoring, Physiologic , Adhesiveness , Nanotechnology
10.
Biomacromolecules ; 23(4): 1557-1568, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35258298

ABSTRACT

Because of structural similarities with type-I animal collagen, recombinant bacterial collagen-like proteins have been progressively used as a source of collagen for biomaterial applications. However, the intracellular expression combined with current costly and time-consuming chromatography methods for purification makes the large-scale production of recombinant bacterial collagen challenging. Here, we report the use of an adapted secretion pathway, used natively byEscherichia colito secrete curli fibers, for extracellular secretion of the bacterial collagen. We confirmed that a considerable fraction of expressed collagen (∼70%) is being secreted freely into the extracellular medium, with an initial purity of ∼50% in the crude culture supernatant. To simplify the purification of extracellular collagen, we avoided cell lysis and used cross-flow filtration or acid precipitation to concentrate the voluminous supernatant and separate the collagen from impurities. We confirmed that the secreted collagen forms triple helical structures, using Sirius Red staining and circular dichroism. We also detected collagen biomarkers via Raman spectroscopy, further supporting that the recombinant collagen forms a stable triple helical conformation. We further studied the effect of the isolation methods on the morphology and secondary structure, concluding that the final collagen structure is process-dependent. Overall, we show that the curli secretion system can be adapted for extracellular secretion of the bacterial collagen, eliminating the need for cell lysis, which simplifies the collagen isolation process and enables a simple cost-effective method with potential for scale-up.


Subject(s)
Collagen , Escherichia coli , Animals , Bacterial Proteins/metabolism , Collagen/chemistry , Culture Media/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/chemistry
11.
Mol Pharm ; 18(9): 3387-3400, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34375118

ABSTRACT

Small interfering RNA (siRNA)-based drugs have shown tremendous potential to date in cancer gene therapy. Despite the considerable efforts in siRNA design and manufacturing, unsatisfactory delivery systems persist as a limitation for the application of siRNA-based drugs. In this work, the cholesterol, cell-penetrating peptide conjugate cRGD (R8-cRGD), and polyethylene glycol (PEG) were introduced into low-molecular-weight polyethyleneimine (LMW PEI) to form cRGD-R9-cholesterol-PEI-PEG (RRCPP) nanoparticles with specific targeting and highly penetrating abilities. The enhanced siRNA uptake efficiency of the RRCPP delivery system benefited from R8-cRGD modification. Wee1 is an oncogenic nuclear kinase that can regulate the cell cycle as a crucial G2/M checkpoint. Overexpression of Wee1 in melanoma may lead to a poor prognosis. In the present study, RRCPP nanoparticles were designed for Wee1 siRNA delivery to form an RRCPP/siWee1 complex, which significantly silenced the expression of the WEE1 gene (>60% inhibition) and induced B16 tumor cell apoptosis by abrogating the G2M checkpoint and DNA damage in vitro. Furthermore, the RRCPP/siWee1 complex suppressed B16 tumor growth in a subcutaneous xenograft model (nearly 85% inhibition rate) and lung metastasis (nearly 66% inhibition rate) with ideal in vivo safety. Briefly, our results support the validity of RRCPP as a potential Wee1 siRNA carrier for melanoma gene therapy.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Melanoma/drug therapy , Nanoparticle Drug Delivery System/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , RNA, Small Interfering/administration & dosage , Skin Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle Proteins/genetics , Cell-Penetrating Peptides/chemistry , Disease Models, Animal , Female , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Melanoma/genetics , Melanoma/pathology , Mice , Peptides, Cyclic/chemistry , Protein-Tyrosine Kinases/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL