Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 246: 112299, 2023 09.
Article in English | MEDLINE | ID: mdl-37354603

ABSTRACT

Metal copper complexes have attracted extensive attention as potential alternatives to platinum-based anticancer drugs due to their possible different modes of action. Herein, a new copper(II) gluconate complex, namely [Cu(DPQ)(Gluc)]·2H2O (CuGluc, DPQ = pyrazino[2,3-f][1,10]phenanthroline), with good water-solubility and high anticancer activity was synthesized by using D-gluconic acid (Gluc-2H) as an auxiliary ligand. The complex was well characterized by single-crystal X-ray diffraction analysis, elemental analysis, molar conductivity, and Fourier transform infrared spectroscopy (FTIR). The DNA-binding experiments revealed that CuGluc was bound to DNA by intercalation with end-stacking binding. CuGluc could oxidatively cleave DNA, in which 1O2 and H2O2 were involved. In addition, CuGluc was bound to the IIA subdomain of human serum albumin (HSA) through hydrophobic interaction and hydrogen bonding, showing a good affinity for HSA. The complex showed superior anticancer activity toward several cancer cells than cisplatin in vitro. Further studies indicated that CuGluc caused apoptotic cell death in human liver cancer (HepG2) cells through elevated intracellular reactive oxygen species (ROS) levels, mitochondrial dysfunction, cell cycle arrest, and caspase activation. Interestingly, CuGluc also triggered the ferroptosis mechanism through lipid peroxide accumulation and inhibition of glutathione peroxidase 4 (GPX4) activity. More importantly, CuGluc significantly inhibited tumor growth in vivo, which may benefit from the combined effects of apoptosis and ferroptosis. This work provides a promising strategy to develop highly effective antitumor copper complexes by coordinating with the glucose metabolite D-gluconic acid and exploiting the synergistic effects of apoptosis and ferroptosis mechanisms.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ferroptosis , Neoplasms , Humans , Copper/chemistry , Hydrogen Peroxide/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Apoptosis , Gluconates/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Serum Albumin, Human , DNA/chemistry , Cell Line, Tumor
2.
Dalton Trans ; 51(43): 16574-16586, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36263706

ABSTRACT

Copper complexes are considered as potential candidates for anticancer therapy and medical applications. In this paper, three new Cu(II) complexes, [Cu(IPY)2](ClO4)2·H2O (CuI1), [Cu(IPY)(L-Phe)H2O]ClO4·0.5H2O (CuI2) and [Cu(IPY)(L-Val)H2O]ClO4 (CuI3) (where IPY = 2-(1H-imidazol-2-yl)pyridine, L-Phe = L-phenylalanine, and L-Val = L-valine), with good amphipathic properties were synthesized and characterized. Their single crystal X-ray diffraction results revealed that CuI1 was four-coordinated, while CuI2 and CuI3 both adopted a five-coordinated tetragonal pyramidal configuration. Multi-spectral methods, viscosity experiment and molecular docking technique showed that the three complexes interacted with DNA through insertion. The results of the gel electrophoresis experiments indicated that DNA was oxidatively cleaved by all the complexes in a concentration-dependent manner. Moreover, singlet oxygen (1O2), hydrogen peroxide (H2O2) and superoxide anion radicals (˙O2-) were associated with the oxidative cleavage of DNA. All the complexes also had good binding affinity with human serum albumin (HSA). The MB degradation assay revealed that all complexes could react with H2O2 to form ˙OH through Fenton-like processes. The complexes displayed good antiproliferative activity against the tested human cancer cells in vitro, including cervical carcinoma cells (HeLa), liver cancer cells (HepG2 and BEL-7402) and gastric adenocarcinoma cells (SGC-7901), but showed lower toxicity to normal liver cells (LO2). The anticancer mechanism research revealed that CuI1, CuI2 and CuI3 arrested the cell cycle at the S phase, elevated intracellular reactive oxygen species (ROS) levels and induced loss of mitochondrial membrane potential (MMP). The results indicated that these Cu(II) complexes could induce DNA damage and ROS-mediated mitochondrial dysfunction, leading to cancer cell apoptosis. Our work provides a theoretical basis for the design of new low-toxicity and highly efficient anticancer Cu(II) complexes by incorporating biological metabolites and aromatic heterocyclic ligands.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Humans , Serum Albumin, Human , Reactive Oxygen Species/metabolism , Amino Acids , Molecular Docking Simulation , Hydrogen Peroxide , Antineoplastic Agents/chemistry , DNA/chemistry , Copper/pharmacology , Copper/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Crystallography, X-Ray
3.
Dalton Trans ; 51(25): 9878-9887, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35713093

ABSTRACT

Two new copper(II) complexes of sparfloxacin (sf), [Cu(Hsf)(HPB)(H2O)](ClO4)2 (1) and [Cu(Hsf)(PBT)(H2O)](ClO4)2 (2) (where HPB = 2-(2'-pyridyl)benzimidazole and PBT = 2-(4'-pyridyl) benzothiazole), have been synthesized and characterized by physicochemical and spectroscopic techniques. The oil-water partition coefficient (log P) values of complexes 1 and 2 were 1.47 and 1.71, respectively. By studying the interaction between the complexes and DNA, it was found that the complexes could bind to DNA through an intercalation mode. Moreover, both complexes were evaluated for antitumor activity, revealing that the complexes displayed good inhibitory activity toward the tested cancer cell lines (human lung carcinoma A549 cells, human hepatocellular carcinoma Bel-7402 cells and human esophageal carcinoma Eca-109 cells), but showed relatively low toxicity against normal human hepatic LO2 cells. In particular, the antitumor mechanism of the complexes on Eca-109 cells was investigated by morphological analysis, apoptosis analysis and determination of cell cycle arrest, mitochondrial membrane potential, reactive oxygen species (ROS) levels, and release of cytochrome c and Ca2+. The results demonstrated that the complexes could induce loss of intracellular mitochondrial functions and increase of ROS levels, which led to an increase of Ca2+ levels and the release of cytochrome c into the cytoplasm. In addition, the cell cycle was arrested in the G2/M phase, and western blot analysis showed that the caspase family was activated. These results fully proved that the complexes could induce apoptosis through DNA damage and loss of mitochondrial functions, accompanied by the regulation of endogenous proteins.


Subject(s)
Antineoplastic Agents , Carcinoma , Coordination Complexes , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Cytochromes c/pharmacology , DNA/chemistry , Fluoroquinolones , Humans , Reactive Oxygen Species/metabolism
4.
Eur J Med Chem ; 213: 113182, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33486198

ABSTRACT

In this paper, two new Cu(II) complexes, [Cu(Gluc)(HPB)(H2O)]Gluc (CuG1) and [Cu(Gluc)(HPBC)(H2O)]Gluc (CuG2) (where HPB = 2-(2'-pyridyl)benzimidazole, HPBC = 5-chloro-2-(2'-pyridyl)benzimidazole, Gluc = d-Gluconic acid), with good water solubility were synthesized and characterized. These complexes exhibited a five-coordinated tetragonal pyramidal geometry. The DNA binding and cleavage properties of the complexes were investigated using multi-spectroscopy, viscosity measurement, molecular docking and gel electrophoresis analysis methods. The results showed that the complexes could interact with DNA by insertion and groove binding, and cleave CT-DNA through a singlet oxygen-dependent pathway in the presence of ascorbic acid. The studies on antibacterial and anticancer activities in vitro demonstrated that both complexes had good inhibitory activity against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes) and one Gram-negative bacterium (Escherichia coli) and good cytotoxic activity toward the tested cancer cells (A549, HeLa and SGC-7901). CuG2 showed higher antimicrobial and cytotoxic activities than CuG1, which was consistent with their binding strength and cleavage ability to DNA, indicating that their antimicrobial and cytotoxic activities may be related to the DNA interaction. Moreover, the cell-based mechanism studies have indicated that CuG1 and CuG2 could arrest the cell cycle at G2/M phase, elevate the levels of intracellular reactive oxygen species (ROS) and decrease the mitochondrial membrane potential (MMP). The results showed that the complexes could induce apoptosis through DNA-damaged and ROS-mediated mitochondrial dysfunction pathways. Finally, the in vivo antitumor study revealed that CuG2 inhibited tumor growth by 50.44%, which is better than that of cisplatin (40.94%).


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , DNA/drug effects , Gluconates/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Bacillus subtilis/drug effects , Binding Sites/drug effects , Cattle , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Escherichia coli/drug effects , Gluconates/chemistry , Humans , Listeria monocytogenes/drug effects , Models, Molecular , Molecular Structure , Solubility , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Tumor Cells, Cultured , Water/chemistry
5.
Dalton Trans ; 49(33): 11583-11590, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32766642

ABSTRACT

Chemotherapeutic agents that affect lysosomal functions represent a promising strategy for selective tumor therapy and overcoming drug resistance. In this work, two dinuclear phosphorescent rhenium(i) tricarbonyl complexes (DRe1 and DRe2) containing carboline derivatives have been synthesized, characterized and explored as potential chemotherapeutic and photodynamic therapy agents. The two dinuclear rhenium(i) complexes have good intrinsic phosphorescence properties and can label the lysosomes in cancer cells. Both dinuclear rhenium(i) complexes show potent anticancer activities toward several tested cancer cells. Moreover, they also have marked inhibitory activities against cisplatin-resistant human lung carcinoma cells (A549R), with complex DRe2 displaying 16-fold higher activity than cisplatin. Mechanism studies reveal that complex DRe2 can induce cancer cells to overproduce reactive oxygen species (ROS), including superoxide anion radicals, which leads to lysosomal membrane permeabilization (LMP) and subsequent cell apoptosis. Additionally, both DRe1 and DRe2 display significant phototoxicity under light (425 nm) irradiation in A549 cells, with phototoxicity index values of 60.8 and 41.8, respectively. Therefore, these two dinuclear organometallic rhenium(i) tricarbonyl complexes are potential anticancer agents for combined chemo-photodynamic therapy.


Subject(s)
Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Luminescent Agents/chemical synthesis , Photosensitizing Agents/chemical synthesis , Rhenium/chemistry , A549 Cells , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carbolines/chemistry , Cell Membrane Permeability , Cell Proliferation/drug effects , Cisplatin/pharmacology , Coordination Complexes/pharmacology , Drug Discovery , HeLa Cells , Humans , Ligands , Luminescent Agents/pharmacology , Lysosomes/metabolism , Photochemotherapy , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
6.
Dalton Trans ; 49(11): 3562-3569, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32123890

ABSTRACT

The combination of chemotherapeutic and photodynamic activities in an iridium-based molecular compound is less reported. Herein, two iridium complexes (IrC1 and IrC2) with ß-carboline alkaloid ligands were designed and synthesized. Both complexes exhibited high anticancer activities with IC50 values of around 1 µM in the dark against several cell lines tested. Notably, the cytotoxicity of these two complexes against lung cancer (A549) cells increased significantly under light (425 nm) irradiation, with phototoxicity index (PI) values of 120 and 93, respectively. They were specifically enriched in the mitochondria. Cell-based assays demonstrated that IrC1 induced an increase in intracellular reactive oxygen species (ROS) levels, reduction in ATP production, mitochondrial DNA damage, an increase in lipid peroxidation levels, and proteasomal activity inhibition. Under light conditions (in some cases a two-photon laser was also applied), these effects were greatly enhanced. Overall, we have demonstrated that these iridium complexes have dual activities of chemotherapy and photodynamic therapy, which may help to design new metal-based anticancer agents for combined chemo-photodynamic therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Iridium/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , DNA Damage , DNA, Mitochondrial/drug effects , Drug Screening Assays, Antitumor , Humans , Iridium/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...