Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 17(8): e0272300, 2022.
Article in English | MEDLINE | ID: mdl-35944045

ABSTRACT

Annual monitoring of the spatial distribution of cultivated land is important for maintaining the ecological environment, achieving a status quo of land resource management, and guaranteeing agricultural production. With the gradual development of remote sensing technology, it has become a common practice to obtain cultivated land boundary information on a large scale with the help of satellite Earth observation images. Traditional land use classification methods are affected by multiple types of land cover, which leads to a decrease in the accuracy of cultivated land mapping. In contrast, although the current advanced methods (such as deep learning) can obtain more accurate cultivated land mapping results than traditional methods, such methods often require the use of a massive amount of training samples, large computing power, and highly complex model tuning processes, increasing the cost of mapping and requiring the involvement of more professionals. This has hindered the promotion of related methods in mapping institutions. This paper proposes a method based on time series vector features (MTVF), which uses vector thinking to establish the features. The advantage of this method is that the introduction of vector features enlarges the differences between the different land cover types, which overcomes the loss of mapping accuracy caused by the influences of the spectra of different ground objects and ensures the calculation efficiency. Moreover, the MTVF uses a traditional method (random forest) as the classification core, which makes the MTVF less demanding than advanced methods in terms of the number of training samples. Sentinel-2 satellite images were used to carry out cultivated land mapping for 2020 in northern Henan Province, China. The results show that the MTVF has the potential to accurately identify cultivated land. Furthermore, the overall accuracy, producer accuracy, and user accuracy of the overall study area and four sub-study areas were all greater than 90%. In addition, the cultivated land mapping accuracy of the MTVF is significantly better than that of the maximum likelihood, support vector machine, and artificial neural network methods.


Subject(s)
Agriculture , Remote Sensing Technology , China , Environment , Remote Sensing Technology/methods , Support Vector Machine , Time Factors
2.
ACS Omega ; 2(10): 7048-7056, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-31457287

ABSTRACT

A novel ladderlike fused-ring donor, dithienocyclopentacarbazole (DTCC) derivative, is used to design and synthesize three novel donor-acceptor-π-acceptor-type organic dyes (C1-C3) via facile direct arylation reactions, in which the DTCC derivative substituted by four p-octyloxyphenyl groups is served as the electron donor and the carboxylic acid group is used as the electron acceptor or anchoring group. To fine-tune the optical, electrochemical, and photovoltaic properties of the three dyes, various auxiliary acceptors, including benzo[2,1,3]thiadiazole (BT), 5,6-difluorobenzo[2,1,3]thiadiazole (DFBT), and pyridal[2,1,3]thiadiazole (PT), are incorporated into the dye backbones. The results indicate that all of the three dyes exhibit strong light-capturing ability in the visible region and obtain relatively high molar extinction coefficients (>31 000 M-1 cm-1) due to their strong charge transfer (CT) from donor to acceptor. Moreover, theoretical model calculations demonstrate fully separated highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels for the three dyes, which is helpful for efficient charge separation and electron injection. Using the three dyes as sensitizers, conventional dye-sensitized solar cells (DSSCs) based on liquid iodide/triiodide redox electrolytes are fabricated. Our results indicate that the BT-containing dye C1 affords the highest power conversion efficiency of up to 6.75%, much higher than that of the DFBT-containing dye C2 (5.40%) and the PT-containing dye C3 (1.85%). To our knowledge, this is the first example reported in the literature where the DTCC unit has been used to develop novel organic dyes for DSSC applications. Our work unambiguously demonstrates that the ladderlike DTCC derivatives are the superb electron-donating blocks for the development of high-performance organic dyes.

SELECTION OF CITATIONS
SEARCH DETAIL