Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1304466, 2023.
Article in English | MEDLINE | ID: mdl-38077400

ABSTRACT

Background: We explore sphingolipid-related genes (SRGs) in skin melanoma (SKCM) to develop a prognostic indicator for patient outcomes. Dysregulated lipid metabolism is linked to aggressive behavior in various cancers, including SKCM. However, the exact role and mechanism of sphingolipid metabolism in melanoma remain partially understood. Methods: We integrated scRNA-seq data from melanoma patients sourced from the GEO database. Through the utilization of the Seurat R package, we successfully identified distinct gene clusters associated with patient survival in the scRNA-seq data. Key prognostic genes were identified through single-factor Cox analysis and used to develop a prognostic model using LASSO and stepwise regression algorithms. Additionally, we evaluated the predictive potential of these genes within the immune microenvironment and their relevance to immunotherapy. Finally, we validated the functional significance of the high-risk gene IRX3 through in vitro experiments. Results: Analysis of scRNA-seq data identified distinct expression patterns of 4 specific genes (SRGs) in diverse cell subpopulations. Re-clustering cells based on increased SRG expression revealed 7 subgroups with significant prognostic implications. Using marker genes, lasso, and Cox regression, we selected 11 genes to construct a risk signature. This signature demonstrated a strong correlation with immune cell infiltration and stromal scores, highlighting its relevance in the tumor microenvironment. Functional studies involving IRX3 knockdown in A375 and WM-115 cells showed significant reductions in cell viability, proliferation, and invasiveness. Conclusion: SRG-based risk signature holds promise for precise melanoma prognosis. An in-depth exploration of SRG characteristics offers insights into immunotherapy response. Therapeutic targeting of the IRX3 gene may benefit melanoma patients.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/therapy , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Prognosis , Immunotherapy , Lipid Metabolism , Tumor Microenvironment/genetics
2.
Front Pharmacol ; 14: 1264345, 2023.
Article in English | MEDLINE | ID: mdl-37822877

ABSTRACT

Background: Uveal melanoma (UVM) is a primary intraocular malignancy that poses a significant threat to patients' visual function and life. The basement membrane (BM) is critical for establishing and maintaining cell polarity, adult function, embryonic and organ morphogenesis, and many other biological processes. Some basement membrane protein genes have been proven to be prognostic biomarkers for various cancers. This research aimed to develop a novel risk assessment system based on BMRGs that would serve as a theoretical foundation for tailored and accurate treatment. Methods: We used gene expression profiles and clinical data from the TCGA-UVM cohort of 80 UVM patients as a training set. 56 UVM patients from the combined cohort of GSE84976 and GSE22138 were employed as an external validation dataset. Prognostic characteristics of basement membrane protein-related genes (BMRGs) were characterized by Lasso, stepwise multifactorial Cox. Multivariate analysis revealed BMRGs to be independent predictors of UVM. The TISCH database probes the crosstalk of BMEGs in the tumor microenvironment at the single-cell level. Finally, we investigated the function of ITGA5 in UVM using multiple experimental techniques, including CCK8, transwell, wound healing assay, and colony formation assay. Results: There are three genes in the prognostic risk model (ADAMTS10, ADAMTS14, and ITGA5). After validation, we determined that the model is quite reliable and accurately forecasts the prognosis of UVM patients. Immunotherapy is more likely to be beneficial for UVM patients in the high-risk group, whereas the survival advantage may be greater for UVM patients in the low-risk group. Knockdown of ITGA5 expression was shown to inhibit the proliferation, migration, and invasive ability of UVM cells in vitro experiments. Conclusion: The 3-BMRGs feature model we constructed has excellent predictive performance which plays a key role in the prognosis, informing the individualized treatment of UVM patients. It also provides a new perspective for assessing pre-immune efficacy.

3.
Neural Plast ; 2023: 5545205, 2023.
Article in English | MEDLINE | ID: mdl-37609123

ABSTRACT

Hyperoside (Hyp), a kind of Chinese herbal medicine, exerts multiple therapeutic effects on many diseases. However, the role and mechanisms of Hyp in vascular pathophysiology in ischemic stroke need to be further established. The study aimed to investigate the role of (large-conductance Ca2+-activated K+) BK channels on the vasoprotection of Hyp against cerebral ischemia and reperfusion (I/R) injury in rats. The concentration gradient of Hyp was pretreated in both the middle cerebral artery occlusion and reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary vascular smooth muscle cells (VSMCs) in rats. A series of indicators were detected, including neurological deficit score, infarct volume, malondialdehyde (MDA), superoxide dismutase (SOD), cerebral blood flow (CBF), cell viability, membrane potential, and BK channels α- and ß1-subunits expression. The results showed that Hyp significantly reduced infarct volume and ameliorated neurological dysfunction in I/R-injured rats. Besides, the effects of I/R-induced reduction of BK channels α- and ß1-subunits expression were significantly reversed by Hyp in endothelial-denudated cerebral basilar arteries. Furthermore, the protective effect against I/R-induced increases of MDA and reduction of SOD as well as CBF induced by Hyp was significantly reversed by iberiotoxin (IbTX). In OGD/R-injured VSMCs, downregulated cellular viability and BK channels ß1-subunits expression were remarkably reversed by Hyp. However, neither OGD/R nor Hyp affected BK channels α-subunits expression, and Hyp failed to induced hyperpolarization of VSMCs. Moreover, the protective effect against OGD/R-induced reduction of cell viability and SOD level and increases of MDA production induced by Hyp was significantly reversed by IbTX in VSMCs. The study indicates that Hyp has the therapeutic potential to improve vascular outcomes, and the mechanism is associated with suppressing oxidative stress and improving CBF through upregulating BK channels.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Rats , Large-Conductance Calcium-Activated Potassium Channels , Reperfusion Injury/drug therapy , Superoxide Dismutase , Brain Ischemia/drug therapy
4.
Front Immunol ; 14: 1201573, 2023.
Article in English | MEDLINE | ID: mdl-37325647

ABSTRACT

Background: Extensive research has established the significant correlations between cancer-associated fibroblasts (CAFs) and various stages of cancer development, including initiation, angiogenesis, progression, and resistance to therapy. In this study, we aimed to investigate the characteristics of CAFs in lung adenocarcinoma (LUAD) and develop a risk signature to predict the prognosis of patients with LUAD. Methods: We obtained single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data from the public database. The Seurat R package was used to process the scRNA-seq data and identify CAF clusters based on several biomarkers. CAF-related prognostic genes were further identified using univariate Cox regression analysis. To reduce the number of genes, Lasso regression was performed, and a risk signature was established. A novel nomogram that incorporated the risk signature and clinicopathological features was developed to predict the clinical applicability of the model. Additionally, we conducted immune landscape and immunotherapy responsiveness analyses. Finally, we performed in vitro experiments to verify the functions of EXO1 in LUAD. Results: We identified 5 CAF clusters in LUAD using scRNA-seq data, of which 3 clusters were significantly associated with prognosis in LUAD. A total of 492 genes were found to be significantly linked to CAF clusters from 1731 DEGs and were used to construct a risk signature. Moreover, our immune landscape exploration revealed that the risk signature was significantly related to immune scores, and its ability to predict responsiveness to immunotherapy was confirmed. Furthermore, a novel nomogram incorporating the risk signature and clinicopathological features showed excellent clinical applicability. Finally, we verified the functions of EXP1 in LUAD through in vitro experiments. Conclusions: The risk signature has proven to be an excellent predictor of LUAD prognosis, stratifying patients more appropriately and precisely predicting immunotherapy responsiveness. The comprehensive characterization of LUAD based on the CAF signature can predict the response of LUAD to immunotherapy, thus offering fresh perspectives into the management of LUAD patients. Our study ultimately confirms the role of EXP1 in facilitating the invasion and growth of tumor cells in LUAD. Nevertheless, further validation can be achieved by conducting in vivo experiments.


Subject(s)
Adenocarcinoma of Lung , Cancer-Associated Fibroblasts , Lung Neoplasms , Humans , Prognosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy
5.
Front Immunol ; 14: 1336187, 2023.
Article in English | MEDLINE | ID: mdl-38274814

ABSTRACT

Background: We explored the characteristics of single-cell differentiation data in glioblastoma and established prognostic markers based on CRYAB to predict the prognosis of glioblastoma patients. Aberrant expression of CRYAB is associated with invasive behavior in various tumors, including glioblastoma. However, the specific role and mechanisms of CRYAB in glioblastoma are still unclear. Methods: We assessed RNA-seq and microarray data from TCGA and GEO databases, combined with scRNA-seq data on glioma patients from GEO. Utilizing the Seurat R package, we identified distinct survival-related gene clusters in the scRNA-seq data. Prognostic pivotal genes were discovered through single-factor Cox analysis, and a prognostic model was established using LASSO and stepwise regression algorithms. Moreover, we investigated the predictive potential of these genes in the immune microenvironment and their applicability in immunotherapy. Finally, in vitro experiments confirmed the functional significance of the high-risk gene CRYAB. Results: By analyzing the ScRNA-seq data, we identified 28 cell clusters representing seven cell types. After dimensionality reduction and clustering analysis, we obtained four subpopulations within the oligodendrocyte lineage based on their differentiation trajectory. Using CRYAB as a marker gene for the terminal-stage subpopulation, we found that its expression was associated with poor prognosis. In vitro experiments demonstrated that knocking out CRYAB in U87 and LN229 cells reduced cell viability, proliferation, and invasiveness. Conclusion: The risk model based on CRYAB holds promise in accurately predicting glioblastoma. A comprehensive study of the specific mechanisms of CRYAB in glioblastoma would contribute to understanding its response to immunotherapy. Targeting the CRYAB gene may be beneficial for glioblastoma patients.


Subject(s)
Glioblastoma , Glioma , Humans , Glioblastoma/diagnosis , Glioblastoma/genetics , Prognosis , Glioma/diagnosis , Glioma/genetics , Algorithms , Cell Differentiation , Tumor Microenvironment/genetics , alpha-Crystallin B Chain
6.
Front Immunol ; 14: 1288137, 2023.
Article in English | MEDLINE | ID: mdl-38274828

ABSTRACT

Background: Glioblastoma (GBM), a prevalent malignant neoplasm within the neuro-oncological domain, has been a subject of considerable scrutiny. Macrophages, serving as the principal immunological constituents, profoundly infiltrate the microenvironment of GBM. However, investigations elucidating the intricate immunological mechanisms governing macrophage involvement in GBM at the single-cell level remain notably limited. Methods: We conducted a comprehensive investigation employing single-cell analysis, aiming to redefine the intricate cellular landscape within both the core and peripheral regions of GBM tumors. Our analytical focus extended to the profound study of macrophages, elucidating their roles within the context of oxidative stress, intercellular information exchange, and cellular trajectories concerning GBM and its assorted subpopulations. We pursued the identification of GBM prognostic genes intricately associated with macrophages. Utilizing experimental research to investigate the relevance of MANBA in the context of GBM. Results: Our investigations have illuminated the central role of macrophages in the intricate interplay among various subpopulations within the GBM microenvironment. Notably, we observed a pronounced intensity of oxidative stress responses within macrophages when compared to their GBM counterparts in other subpopulations. Moreover, macrophages orchestrated intricate cellular communication networks, facilitated by the SPP1-CD44 axis, both internally and with neighboring subpopulations. These findings collectively suggest the potential for macrophage polarization from an M1 to an M2 phenotype, contributing to immune suppression within the tumor microenvironment. Furthermore, our exploration unearthed GBM prognostic genes closely associated with macrophages, most notably MANBA and TCF12. Remarkably, MANBA appears to participate in the modulation of neuroimmune functionality by exerting inhibitory effects on M1-polarized macrophages, thereby fostering tumor progression. To bolster these assertions, experimental validations unequivocally affirmed the promotional impact of MANBA on GBM, elucidated through its capacity to curb cell proliferation, invasiveness, and metastatic potential. Conclusion: These revelations represent a pivotal step towards unraveling the intricate immunological mechanisms governing the interactions between macrophages and diverse subpopulations within the GBM milieu. Furthermore, they lay the foundation for the development of an innovative GBM prognostic model, with MANBA at its epicenter, and underscore the potential for novel immunotherapeutic targets in the ongoing pursuit of enhanced treatment modalities for this formidable malignancy.


Subject(s)
Glioblastoma , Humans , Glioblastoma/pathology , Cell Line, Tumor , Macrophages , Cell Communication , Gene Expression Profiling , Tumor Microenvironment/genetics
7.
Dis Markers ; 2022: 8133505, 2022.
Article in English | MEDLINE | ID: mdl-35493303

ABSTRACT

Glioma is a serious disease burden globally, with high mortality and recurrence rates. CDGSH iron sulfur domain 2 (CISD2) is an evolutionarily conserved protein that is involved in several cancers. However, its role in the prognosis and immune infiltration in glioma remains unclear. In our research, RNA-seq matrix and clinicopathological relevant data for CISD2 were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Human Protein Atlas was used to verify the CISD2 protein level in glioma, and STRING was used to establish relative coexpression gene network. The Kaplan-Meier plotter was adopted to analyze the effect of CISD2 on prognosis. The connection between CISD2 expression and immune infiltration was analyzed using single-sample GSEA (ssGSEA), TIMER, and GEPIA. In contrast to normal tissues, CISD2 expression was significantly higher in glioma tissues, and CISD2 presented a certain diagnostic value in distinguishing glioma tissues from normal tissues. Furthermore, the CISD2 level was correlated with age, histologic grade, histological type, isocitrate dehydrogenase (IDH) status, 1p/19q codeletion status, and primary therapy outcome of glioma, while high CISD2 mRNA expression was correlated with grave overall survival. Multivariate analysis demonstrated that CISD2 was an independent risk factor for patients with glioma. Functional enrichment analysis indicated that CISD2 could regulate proliferation, immune reaction, and mitochondrial function. The results from the ssGSEA and TIMER databases confirmed that CISD2 acts a prominent role in immune cell infiltration in the tumor microenvironment, especially in low-grade glioma (LGG). Furthermore, CISD2 expression was observably correlated to M2 polarization in macrophages with glioma progression. This is the first research to investigate the immune role of CISD2 in glioma. CISD2 may be an innovative prognostic biomarker and can act as a potential target for future therapy for glioma.


Subject(s)
Biomarkers, Tumor , Glioma , Biomarkers, Tumor/metabolism , Glioma/pathology , Humans , Membrane Proteins/genetics , Prognosis , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...