Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 219: 115142, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36566968

ABSTRACT

Humic substances (HS) can facilitate electron transfer during biogeochemical processes due to their redox properties, but the structure-redox activity relationships are still difficult to describe and poorly understood. Herein, the linear (Partial Least Squares regressions; PLS) and nonlinear (artificial neural network; ANN) models were applied to monitor the structure dependence of HS redox activities in terms of electron accepting (EAC), electron donating (EDC) and overall electron transfer capacities (ETC) using its physicochemical features as input variables. The PLS model exhibited a moderate ability with R2 values of 0.60, 0.53 and 0.65 to evaluate EAC, EDC and ETC, respectively. The variable influence in the projection (VIP) scores of the PLS identified that the phenols, quinones and aromatic systems were particularly important for describing the redox activities of HS. Compared with the PLS model, the back-propagation ANN model achieved higher performance with R2 values of 0.81, 0.65 and 0.78 for monitoring the EAC, EDC and ETC, respectively. Sensitivity analysis of the ANN separately identified that the EAC highly depended on quinones, aromatics and protein-like fluorophores, while the EDC depended on phenols, aromatics and humic-like fluorophores (or stable free radicals). Additionally, carboxylic groups were the best indicator for evaluating both the EAC and EDC. Good model performances were obtained from the selected features via the PLS and sensitivity analysis, further confirming the accuracy of describing the structure-redox activity relationships with these analyses. This study provides a potential approach for identifying the structure-activity relationships of HS and an efficient machine-learning model for predicting HS redox activities.


Subject(s)
Electrons , Humic Substances , Humic Substances/analysis , Oxidation-Reduction
2.
Sci Total Environ ; 844: 157158, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35798101

ABSTRACT

The electrochemical activity of bioelectrochemical systems (BESs) was proven to be dependent on the stability of electroactive biofilms (EABs), but the response of EABs based on real wastewater to external disturbances is not fully known. Herein, we used real wastewater (beer brewery wastewater) as a substrate for culturing EABs and found that current generation, biomass, redox activity and extracellular polymeric substances (EPS) content in those EABs were lower as compared to EABs cultured with synthetic wastewaters (acetate and glucose). However, the EABs from the beer brewery wastewater showed moderate anti-shock resistance capability. The proteins and humic acid in loosely bound EPS (LB-EPS) exhibited a positive linear relationship with current recovery after Ag+ shock, indicating the importance of LB-EPS for protecting the EABs. Fluorescence and Fourier transform infrared spectroscopy integrated with two-dimensional correlation spectroscopy verified that the spectra of the protein-like region of LB-EPS changed considerably under the interference of Ag+ concentration and the CO group of humic acid or proteins was mainly responsible for binding with Ag+ to attenuate its toxicity to the EABs. This is the first study revealing the underlying molecular mechanism of EABs cultured with real wastewater against external heavy metal shock and provides useful insights into enhancing the application of BESs in future water treatment.


Subject(s)
Humic Substances , Wastewater , Biofilms , Extracellular Polymeric Substance Matrix , Metals
3.
Opt Lett ; 47(8): 1941-1944, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35427306

ABSTRACT

Improving sensitivity is critical for the higher-order harmonic fiber Bragg grating sensors. To this aim, in this work, we have successfully introduced the phase-shift into the third harmonic fiber Bragg grating for tailoring a double-dip spectrum with a high finesse notch. The dual dips showed reversed responses for the intensity regarding the change of the temperature or axial strain, enabling a highly sensitive measuring regime using the intensity contrast between the two dips. Deduced from the sinusoidal responding curves, the highest temperature and the axial strain sensitivity could reach 0.964 dB/°C, and 0.0257 dB/µ ε, three-fold times the other intensity-based fiber sensors. This work may promote the higher-order harmonic gratings into applications for enriching wavelength utilization.

4.
Adv Sci (Weinh) ; 9(15): e2200456, 2022 05.
Article in English | MEDLINE | ID: mdl-35319824

ABSTRACT

Photonics has spurred a myriad of diagnostic and therapeutic applications for defeating cancer owing to its superiority in spatiotemporal maneuverability and minimal harm. The limits of light penetration depth and elusiveness of photosensitizer utilization, however, impede the implementation of the photodiagnostic and -therapy for determining and annihilating the deep-situated tumor. Herein, a promising strategy that harnesses functional optical fibers is developed and demonstrated to realize an in vivo endoscopic cancer sensing and therapy ensemble. Tumor detection is investigated using hypoxia-sensitive fluorescent fibers to realize fast and accurate tumor recognition and diagnosis. The tumor treatment is further performed by exploiting the endogenous photothermal effect of rare-earth-doped optical fibers. The eradication of orthotopic and subcutaneous xenografts significantly validates the availability of tumoricidal fibers. The strategy opens horizons to inspire the design of optical fiber-mediated "plug and play" precise tumor theranostics with high safety, which may intrigue broader fields, such as fiber optics, materials, chemistry, medicine, and clinics.


Subject(s)
Needles , Neoplasms , Fiber Optic Technology , Humans , Neoplasms/diagnosis , Neoplasms/therapy , Optical Fibers , Precision Medicine
5.
Analyst ; 147(7): 1449-1456, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35266458

ABSTRACT

Detecting nitroreductase (NTR) activity in hypoxic cells and tissues in situ represents an important step toward accurate delineation of hypoxic disease loci. However, it remains challenging to develop fluorescent probes with the necessary attributes of selectivity, sensitivity, precise targeting and aqueous solubility. Herein, two kinds of fluorescent probes (NNP and cRGD-NNP) built on a 2-nitroimidazole sensing platform were synthesized for the detection of NTR activity in cell and in vivo models of hypoxia. In the presence of NADH, NNP displayed high selectivity for NTR, a strong fluorescence enhancement (108 fold), and a low detection limit (3.6 ng mL-1). Benefiting from the hydrophilic structure and tumor-targeting properties of the cRGD cyclopeptide group, the probe cRGD-NNP efficiently detected NTR activity in MCF cancer cells under hypoxia. In addition, the liposome-encapsulated probe was successfully applied to visualize NTR during liver inflammation in mice.


Subject(s)
Neoplasms , Nitroreductases , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Hypoxia , Inflammation/chemically induced , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...