Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neuroscience ; 479: 48-59, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34648865

ABSTRACT

Diagnosis of major depressive disorder (MDD) is perplexing due to its multifactorial etiologies. Here, we isolated exosomes from the peripheral blood of MDD patients and healthy control subjects for mass spectrometry-based label-free quantitative proteomics. We identified that SERPINF1 is significantly diminished in the peripheral blood-derived exosomes of MDD patients compared to the healthy control subjects. Through RNA immunoprecipitation and luciferase reporter assays, we validated that SERPINF1 is a target of miR-186-5p that is upregulated in MDD patients' blood. In vivo studies in the chronic unpredictable mild stress (CUMS) mice further demonstrated that SERPINF1 in hippocampus is suppressed by miR-186-5p. Inhibiting the microRNA significantly restores the hippocampal SERPINF1 mRNA and protein expression, and ameliorates the depressive-like behaviors including sucrose preference and extended immobility time in the forced swim test. Instead, overexpressing miR-186-5p through tail intravenous injection of the mimics molecularly and behaviorally phenocopies the CUMS mice in wild-type mice. Our results indicate that the exosomal SERPINF1 in peripheral blood could serve as a reliable biomarker indicating MDD development, and miR-186-5p is a potential therapeutic target for the disease.


Subject(s)
Depressive Disorder, Major , Exosomes , MicroRNAs , Animals , Depression , Hippocampus , Humans , Mice , MicroRNAs/genetics
2.
Wound Repair Regen ; 23(6): 878-84, 2015.
Article in English | MEDLINE | ID: mdl-26342154

ABSTRACT

Cold plasma has become an attractive tool for promoting wound healing and treating skin diseases. This article presents an atmospheric pressure plasma jet (APPJ) generated in argon gas through dielectric barrier discharge, which was applied to superficial skin wounds in BALB/c mice. The mice (n = 50) were assigned randomly into five groups (named A, B, C, D, E) with 10 animals in each group. Natural wound healing was compared with stimulated wound healing treated daily with APPJ for different time spans (10, 20, 30, 40, and 50 seconds) on 14 consecutive days. APPJ emission spectra, morphological changes in animal wounds, and tissue histological parameters were analyzed. Statistical results revealed that wound size changed over the duration of the experimental period and there was a significant interaction between experimental day and group. Differences between group C and other groups at day 7 were statistically significant (p < 0.05). All groups had nearly achieved closure of the untreated control wounds at day 14. The wounds treated with APPJ for 10, 20, 30, and 40 seconds showed significantly enhanced daily improvement compared with the control and almost complete closure at day 12, 10, 7, and 13, respectively. The optimal results of epidermal cell regeneration, granulation tissue hyperplasia, and collagen deposition in histological aspect were observed at day 7. However, the wounds treated for 50 seconds were less well healed at day 14 than those of the control. It was concluded that appropriate doses of cold plasma could inactivate bacteria around the wound, activate fibroblast proliferation in wound tissue, and eventually promote wound healing. Whereas, over doses of plasma suppressed wound healing due to causing cell death by apoptosis or necrosis. Both positive and negative effects may be related to the existence of reactive oxygen and nitrogen species (ROS and RNS) in APPJ.


Subject(s)
Collagen/metabolism , Granulation Tissue/pathology , Plasma Gases/pharmacology , Wound Healing , Wounds and Injuries/pathology , Animals , Atmospheric Pressure , Disease Models, Animal , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL