Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 2421, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893290

ABSTRACT

The majority of Alzheimer's disease (AD) cases are late-onset and occur sporadically, however most mouse models of the disease harbor pathogenic mutations, rendering them better representations of familial autosomal-dominant forms of the disease. Here, we generated knock-in mice that express wildtype human Aß under control of the mouse App locus. Remarkably, changing 3 amino acids in the mouse Aß sequence to its wild-type human counterpart leads to age-dependent impairments in cognition and synaptic plasticity, brain volumetric changes, inflammatory alterations, the appearance of Periodic Acid-Schiff (PAS) granules and changes in gene expression. In addition, when exon 14 encoding the Aß sequence was flanked by loxP sites we show that Cre-mediated excision of exon 14 ablates hAß expression, rescues cognition and reduces the formation of PAS granules.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Brain/physiopathology , Disease Models, Animal , Mutation , Neuronal Plasticity/physiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Female , Gene Expression Profiling/methods , Gene Ontology , Gene Regulatory Networks , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Neuronal Plasticity/genetics
2.
Aging Cell ; 18(3): e12919, 2019 06.
Article in English | MEDLINE | ID: mdl-30809950

ABSTRACT

Diabetes mellitus (DM) is one of the most devastating diseases that currently affects the aging population. Recent evidence indicates that DM is a risk factor for many brain disorders, due to its direct effects on cognition. New findings have shown that the microtubule-associated protein tau is pathologically processed in DM; however, it remains unknown whether pathological tau modifications play a central role in the cognitive deficits associated with DM. To address this question, we used a gain-of-function and loss-of-function approach to modulate tau levels in type 1 diabetes (T1DM) and type 2 diabetes (T2DM) mouse models. Our study demonstrates that tau differentially contributes to cognitive and synaptic deficits induced by DM. On one hand, overexpressing wild-type human tau further exacerbates cognitive and synaptic impairments induced by T1DM, as human tau mice treated under T1DM conditions show robust deficits in learning and memory processes. On the other hand, neither a reduction nor increase in tau levels affects cognition in T2DM mice. Together, these results shine new light onto the different molecular mechanisms that underlie the cognitive and synaptic impairments associated with T1DM and T2DM.


Subject(s)
Cognitive Dysfunction/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2 , Disease Models, Animal , Synapses/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Animals , Diabetes Mellitus, Type 1/chemically induced , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Mice, Transgenic , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...