Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 270: 116387, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38593589

ABSTRACT

Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.


Subject(s)
Aniline Compounds , Ferroptosis , Naphthoquinones , Neoplasms , Thiophenes , Humans , Naphthoquinones/pharmacology , Apoptosis
2.
Bioorg Med Chem ; 90: 117352, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37257255

ABSTRACT

Ferroptosis is a new type of regulated, non-apoptotic cell death driven by iron-dependent phospholipid peroxidation. Inducing cell ferroptosis by inactivating glutathione peroxidase 4 (GPX4) has been considered as an effective cancer treatment strategy, but only few GPX4 inhibitors have been reported to date. Targeted protein degradation is receiving increasing attention in the discovery and development of therapeutic modality, particularly proteolysis targeting chimeras (PROTACs). Herein, we reported the design, synthesis, and evaluation of different types of GPX4-targeting PROTACs using ML162 derivatives and ligands for CRBN/VHL E3 ligases. Among them, CRBN-based PROTAC GDC-11 showed a relatively balanced biological profile in GPX4 degradation (degradation rate of 33% at 10 µM), cytotoxicity (IC50 = 11.69 µM), and lipid peroxides accumulation (2-foldincreaserelatedtoDMSO), suggesting a typical characteristic of ferroptosis. In silico docking and quantum chemistry theoretical calculations provided a plausible explanation for the moderate degrading effect of these synthesized PROTACs. Overall, this work lays the foundation for subsequent studies of GPX4-targeting PROTACs, and further design and synthesis of GPX4-targeting degrader are currently in progress in our group, which will be reported in due course.


Subject(s)
Iron , Lipid Peroxides , Proteolysis , Phospholipid Hydroperoxide Glutathione Peroxidase , Peroxides , Proteolysis Targeting Chimera
3.
Bioorg Med Chem ; 71: 116941, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35944386

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is a key regulator of many human cancers and has been widely recognized as a promising target for cancer therapy. A variety of small-molecule inhibitors have been developed for targeting STAT3, and some of them are now undergoing clinical trials. S3I-201, a known STAT3 inhibitor, may block STAT3 function in cancer cells by binding to the STAT3 SH2 domain to disrupt STAT3 protein complex formation. Using S3I-201 as a starting point for drug development, we synthesized a series of new STAT3 inhibitors 9a-x in this study by introducing naphthoquinone unit, a privileged fragment in STAT3 inhibitors. Most of the compounds exhibited strong anti-proliferation activity of gastric cancer cells (MGC803, MKN28, MNK1, and AGS). The representative compound 9n (SIL-14) could effectively inhibit the colony formation and migration of gastric cancer cells MGC803, arrest the cell cycle and induce MGC803 cell apoptosis at low micromolar concentrations in vitro. In addition, SIL-14 can also inhibit the phosphorylation of STAT3 protein and significantly decrease the expression of total STAT3, suggesting that it may exert anticancer effects by blocking the STAT3 signaling pathway. These results support that SIL-14 may be a promising STAT3 inhibitor for the further development of potential anti-gastric cancer candidates.


Subject(s)
Naphthoquinones , Stomach Neoplasms , Aminosalicylic Acids/pharmacology , Aminosalicylic Acids/therapeutic use , Benzenesulfonates , Cell Line, Tumor , Cell Proliferation , Humans , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism
4.
J Enzyme Inhib Med Chem ; 37(1): 2004-2016, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35844184

ABSTRACT

Gastric cancer remains a significant health burden worldwide. In continuation of our previous study and development of effective small molecules against gastric cancer, a series of benzochalcone analogues involving heterocyclic molecules were synthesised and biologically evaluated in vitro and in vivo. Among them, the quinolin-6-yl substituted derivative KL-6 inhibited the growth of gastric cancer cells (HGC27, MKN28, AZ521, AGS, and MKN1) with a submicromolar to micromolar range of IC50, being the most potent one in this series. Additionally, KL-6 significantly inhibited the colony formation, migration and invasion, and effectively induced apoptosis of MKN1 cells in a concentration-dependent manner. The mechanistic study revealed that KL-6 could concentration-dependently suppress STAT3 phosphorylation, which may partly contribute to its anticancer activity. Furthermore, in vivo antitumour study on the MKN1 orthotopic tumour model showed that KL-6 effectively inhibited tumour growth (TGI of 78%) and metastasis without obvious toxicity. Collectively, compound KL-6 may support the further development of candidates for gastric cancer treatment.


Subject(s)
Chalcones , STAT3 Transcription Factor , Stomach Neoplasms , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcones/pharmacology , Humans , Molecular Targeted Therapy , Phosphorylation/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Stomach Neoplasms/drug therapy
5.
Front Pharmacol ; 13: 870367, 2022.
Article in English | MEDLINE | ID: mdl-35401187

ABSTRACT

Gastric cancer is a common type of malignant tumor with a relatively poor prognosis and presents a serious threat to global health. Signal Transducer and Activator of Transcription-3 (STAT3) has been strongly implicated in many cancers, and its constitutive activation promotes growth, angiogenesis, inflammation, and immune evasion. Therefore, considerable efforts have been put into developing effective and safe STAT3 inhibitors. In this study, we performed a virtual screening by molecular docking and found that terphenyllin, a marine-derived natural product, directly interacted with STAT3. We further found that terphenyllin inhibited the phosphorylation and activation of STAT3 and decreased the protein levels of STAT3-dependent target genes, including c-Myc and Cyclin D1. Subsequently, we demonstrated that terphenyllin exerted its potent anticancer efficacy against gastric cancer in vitro and in vivo. Terphenyllin concentration-dependently inhibited growth, proliferation, and colony formation and induced cell cycle arrest and apoptosis of gastric cancer cells in vitro. Moreover, terphenyllin treatment suppressed the tumor growth and metastasis in a gastric cancer orthotopic mouse model without notable toxicity in vivo. Taken together, our results indicated that terphenyllin exerts its anticancer activity by inhibiting the STAT3 signaling pathway and may serve as a potent STAT3 inhibitor for gastric cancer treatment.

6.
Curr Med Chem ; 29(25): 4391-4409, 2022.
Article in English | MEDLINE | ID: mdl-35152859

ABSTRACT

Bromodomain and extra-terminal domain (BET) proteins are a well-studied family of proteins associated with a variety of diseases, including malignancy and chronic inflammation. Currently, numerous pan BET inhibitors have exhibited potent efficacy in several in vivo preclinical models and entered clinical trials but have largely stalled due to their adverse events. Therefore, the development of new selective inhibitors and PROTACs (Proteolysis Targeting Chimeras) targeting BET is urgently needed. In the present review, we summarize the BET protein structure and the recent development in BET inhibitors, focusing mainly on BRD4-selective inhibitors and PROTAC degraders.


Subject(s)
Neoplasms , Nuclear Proteins , Cell Cycle Proteins/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Nuclear Proteins/metabolism , Protein Domains , Proteolysis , Transcription Factors/metabolism
7.
J Hematol Oncol ; 14(1): 138, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34488823

ABSTRACT

Targeting pathogenic proteins with small-molecule inhibitors (SMIs) has become a widely used strategy for treating malignant tumors. However, most intracellular proteins have been proven to be undruggable due to a lack of active sites, leading to a significant challenge in the design and development of SMIs. In recent years, the proteolysis-targeting chimeric technology and related emerging degradation technologies have provided additional approaches for targeting these undruggable proteins. These degradation technologies show a tendency of superiority over SMIs, including the rapid and continuous target consumption as well as the stronger pharmacological effects, being a hot topic in current research. This review mainly focuses on summarizing the development of protein degradation technologies in recent years. Their advantages, potential applications, and limitations are also discussed. We hope this review would shed light on the design, discovery, and clinical application of drugs associated with these degradation technologies.


Subject(s)
Drug Discovery/methods , Proteolysis/drug effects , Small Molecule Libraries/pharmacology , Animals , Humans , Molecular Targeted Therapy , Proteins/antagonists & inhibitors , Proteins/metabolism , Small Molecule Libraries/chemistry
8.
Front Bioeng Biotechnol ; 9: 630943, 2021.
Article in English | MEDLINE | ID: mdl-33681168

ABSTRACT

The applications of hydrogels in biomedical field has been since multiple decades. Discoveries in biology and chemistry render this platform endowed with much engineering potentials and growing continuously. Novel approaches in constructing these materials have led to the production of complex hybrid hydrogels systems that can incorporate both natural and synthetic polymers and other functional moieties for mediated cell response, tunable release kinetic profiles, thus they are used and research for diverse biomedical applications. Recent advancement in this field has established promising techniques for the development of biorelevant materials for construction of hybrid hydrogels with potential applications in the delivery of cancer therapeutics, drug discovery, and re-generative medicines. In this review, recent trends in advanced hybrid hydrogels systems incorporating nano/microstructures, their synthesis, and their potential applications in tissue engineering and anticancer drug delivery has been discussed. Examples of some new approaches including click reactions implementation, 3D printing, and photopatterning for the development of these materials has been briefly discussed. In addition, the application of biomolecules and motifs for desired outcomes, and tailoring of their transport and kinetic behavior for achieving desired outcomes in hybrid nanogels has also been reviewed.

9.
Front Bioeng Biotechnol ; 8: 576348, 2020.
Article in English | MEDLINE | ID: mdl-33042977

ABSTRACT

Wounds present serious medical complications and their healing requires strategies that promote angiogenesis, deposition of collagen as well as re-epithelialization of wounds. Currently used conventional wound healing strategies have become less effective due to various issues associated with them. Thus, novel strategies are needed to be developed for early and effective healing of wounds. Metal-organic frameworks (MOFs), formed by linking of metal ions through organic bridging ligands, are highly tunable hybrid materials and have attracted more considerable scientific attention due to their charming and prominent properties, such as abundant pore structures and multiple functionalities. Surface engineering of MOFs with unique ligands can overcome issues associated with conventional wound healing methods, thus resulting in early and effective wound healing. This review has been undertaken to elaborate wound healing, and the use of surface engineered MOFs for effective and rapid wound healing. The process of wound healing will be discussed followed by a detailed review of recent literature for summarizing applications of surface engineered MOFs for wound healing. MOFs wound healing will be discussed in terms of their use as antibacterial agents, therapeutic delivery vehicles, and dressing systems in wound healing.

10.
Curr Top Med Chem ; 20(30): 2789-2800, 2020.
Article in English | MEDLINE | ID: mdl-33076809

ABSTRACT

Traditional Chinese Medicine (TCM) is one of the ancient and most accepted alternative medicinal systems in the world for the treatment of health ailments. World Health Organization recognizes TCM as one of the primary healthcare practices followed across the globe. TCM utilizes a holistic approach for the diagnosis and treatment of cancers. The tumor microenvironment (TME) surrounds cancer cells and plays pivotal roles in tumor development, growth, progression, and therapy resistance. TME is a hypoxic and acidic environment that includes immune cells, pericytes, fibroblasts, endothelial cells, various cytokines, growth factors, and extracellular matrix components. Targeting TME using targeted drug delivery and nanoparticles is an attractive strategy for the treatment of solid tumors and recently has received significant research attention under precise medicine concept. TME plays a pivotal role in the overall survival and metastasis of a tumor by stimulating cell proliferation, preventing the tumor clearance by the immune cells, enhancing the oncogenic potential of the cancer cells, and promoting tumor invasion. Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-associated deaths affecting millions of individuals worldwide each year. TCM herbs contain several bioactive phytoconstituents with a broad range of biological, physiological, and immunological effects on the system. Several TCM herbs and their monomers have shown inhibitory effects in HCC by controlling the TME. This study reviews the fundamentals and applications of targeting strategies for immunosuppressing TME to treat cancers. This study focuses on TME targeting strategies using TCM herbs and the molecular mechanisms of several TCM herbs and their monomers on controlling TME.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Drug Delivery Systems , Drugs, Chinese Herbal/pharmacology , Liver Neoplasms/drug therapy , Medicine, Chinese Traditional , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Drugs, Chinese Herbal/chemistry , Humans , Liver Neoplasms/pathology , Tumor Microenvironment/drug effects
11.
Organogenesis ; 16(4): 113-125, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32799735

ABSTRACT

Bone defects or fractures generally heal in the absence of major interventions due to the high regenerative capacity of bone tissue. However, in situations of severe/large bone defects, these orchestrated regeneration mechanisms are impaired. With advances in modern medicine, natural and synthetic bio-scaffolds from bioceramics and polymers that support bone growth have emerged and gained intense research interest. In particular, scaffolds that recapitulate the molecular cues of extracellular signals, particularly growth factors, offer potential as therapeutic bone biomaterials. The current challenges for these therapies include the ability to engineer materials that mimic the biological and mechanical properties of the real bone tissue matrix, whilst simultaneously supporting bone vascularization. In this review, we discuss the very recent innovative strategies in bone biomaterial technology, including those of endogenous biomaterials and cell/drug delivery systems that promote bone regeneration. We present our understanding of their current value and efficacy, and the future perspectives for bone regenerative medicine.


Subject(s)
Biocompatible Materials , Bone Regeneration , Bone and Bones/physiology , Tissue Engineering/methods , Tissue Scaffolds , Biomimetics , Ceramics/therapeutic use , Drug Delivery Systems , Extracellular Matrix , Humans , Mesenchymal Stem Cells/physiology , Polymers/therapeutic use , Regenerative Medicine
12.
Crit Rev Immunol ; 40(1): 75-92, 2020.
Article in English | MEDLINE | ID: mdl-32421980

ABSTRACT

Pancreatic cancer is one of the most lethal kinds of cancer; numerous patients die from it every year all over the word. Fewer than 5% of people with pancreatic cancer survive death and recover. Recent evidence suggests that inflammation parameters, such as Th17 cells and Tregs, affect the progression and even the diagnosis and treatment of pancreatic cancer. In the inflammation process, T lymphocytes play an essential role in inflammation intensity, and related cytokines modulate immune responses in the tumor microenvironment. Their function is to establish a balance between destructive inflammation and defense against tumor cells via immune system, and Treg/Th17 imbalance is a common problem in this cancer. The role of microbiota in the development of some cancers is clear; microbiota may also be involved in the pancreatic cancer development. All risk factors for pancreatic cancer, such as chronic pancreatitis-related to microbiota, influence the acute or chronic immune response. Some evidence has been presented regarding the role of the immune response in carcinogenesis. In addition, miRNAs are very important in suppressing and stimulating the growth of cancer cells, and a variety of them have been identified. Some miRNAs are abnormally expressed in many cancers and have main roles as post-transcriptional regulators. They show oncogenic or tumor-suppressive functions by binding to marked mRNAs. In this review, we highlight recent findings regarding the role of Treg/Th17 imbalance, microbiota functions, and miRNAs performance in pancreatic cancer. We also present the evidence regarding therapeutic options.


Subject(s)
MicroRNAs/immunology , Microbiota/immunology , Pancreatic Neoplasms/therapy , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Tumor Microenvironment
13.
Cell Immunol ; 353: 104119, 2020 07.
Article in English | MEDLINE | ID: mdl-32446032

ABSTRACT

Tumor associated macrophages (TAMs) are the most frequent immune cells within tumor microenvironment (TME). There is growing evidence that TAMs are involved in tumor progression via multiple mechanisms. TAMs create an immunosuppressive TME by producing growth factors, chemokines, and cytokines which modulate recruitment of immune cells and inhibit anti-tumor responses. They also serve as angiogenesis promoting cells by production of pro-angiogenic factors and matrix metalloproteinases (MMPs) and vascular constructing which guarantee supplying oxygen and nutrients to solid tumor cells. Furthermore, TAMs play important functions in tumor metastasis through contributing to invasion, extravasation, survival, intravasation, and colonization of tumor cells. In this review, we summarized macrophage classification, TAMs polarization, and mechanisms underlying TAM-promoting angiogenesis and metastasis.


Subject(s)
Macrophages/immunology , Neoplasms/immunology , Neovascularization, Pathologic/immunology , Angiogenesis Inducing Agents/metabolism , Animals , Cytokines/metabolism , Disease Progression , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Macrophages/metabolism , Neoplasm Metastasis/physiopathology , Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Tumor Microenvironment/immunology
14.
Virus Res ; 270: 197675, 2019 09.
Article in English | MEDLINE | ID: mdl-31351879

ABSTRACT

Administration of oncolytic viruses (OVs) is an emerging anticancer strategy that exploits the lytic nature of viral replication to enhance the killing of malignant cells. OVs can be used as tools to directly induce cancer cell death and to trigger local and/or systemic immune responses to metastatic cancer in vivo. The effectiveness of OV therapy was initially highlighted by the clinical use of the genetically modified herpes virus, talimogene laherparepvec, for melanoma therapy. A number of OVs are now being evaluated as potential treatments for cancer in clinical trials. In spite of being engineered to specifically target tumor cells, the safety and off-target effects of OV therapy are a concern. The potential safety concerns of OVs are highlighted by current clinical trial criteria, which exclude individuals harbouring other viral infections and people who are immunocompromised. Despite the potential for adverse effects, clinical trials to date revealed relatively minimal adverse immune-related effects, such as fever. With advances in our understanding of virus replication cycles, several novel OVs have emerged. Reverse genetic systems have facilitated the insertion of anticancer genes into a range of OVs to further enhance their tumor-killing capacity. In this review, we highlight the recent advances in OV therapy for a range of human cancers in in vitro and in in vivo animal studies. We further discuss the future of OVs as a therapeutic strategy for a range of life-threatening cancers.


Subject(s)
Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Animals , Clinical Trials as Topic , Disease Models, Animal , Humans , Melanoma/therapy , Oncolytic Virotherapy/adverse effects , Oncolytic Virotherapy/trends , Oncolytic Viruses/physiology , Reverse Genetics , Virus Replication
15.
J Exp Clin Cancer Res ; 37(1): 151, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30005681

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most prevalent malignancies in the world and developed drug resistance has represented one of the most challenging tasks for management. The current therapeutic regimens may select and enrich cancer stem-like cells (CSCs) resulting in the increased resistance against treatment, metastatic potential and mortality. Regorafenib is a multi-kinase inhibitor, an FDA-approved last-of-line treatment for patients with chemo-refractory metastatic CRC. However, regorafenib's potential effects on CSCs have not been fully elucidated. METHODS: Here, we developed two 5-FU resistant CRC cell lines, HCT-116R and DLD-1R and showed the increased CSCs characteristics such as increased side-population cells, tumor sphere formation and expression of stemness markers. These cell lines and CSCs properties were used for evaluating the potential of regorafenib in suppressing CSCs. RESULTS: We showed that regorafenib treatment decreased the stemness phenotypes including tumor sphere formation, and side-population, of both HCT-116R and DLD-1R cells. Additionally, regorafenib suppressed the cell viability in both cell lines synergistically with 5-FU. In vivo, the combination of regorafenib and 5-FU significantly suppressed the tumorigenesis and stemness markers of 5-FU resistant DLD-1R. Mechanistically, regorafenib-mediated effects were associated with the induction of tumor suppressor miR-34a and suppression of WNT/ß-catenin signaling. Our findings demonstrated that regorafenib treatment was associated with the increased level of miR-34a, resulting in reversing drug resistance and cancer-initiating cell phenotypes by degrading WNT/ß-catenin in CRC. CONCLUSION: Regorafenib might be a potential drug for colon cancer stem-like cells and it should be investigated in future clinical trials.


Subject(s)
Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Phenylurea Compounds/therapeutic use , Pyridines/therapeutic use , Carcinogenesis , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Phenylurea Compounds/pharmacology , Pyridines/pharmacology , Signal Transduction
16.
Sci Rep ; 8(1): 1621, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374219

ABSTRACT

Trichostatin A (TSA) possess histone deacetylase (HDAC) inhibitory potential, can reverse the deactivation of tumor suppressor genes and inhibit tumor cell proliferation. We evaluated the effect of TSA on HDAC expression, tumor cell proliferation, and cancer stem cells (CSCs) activities in pancreatic ductal adenocarnoma (PDAC) cells. The PDAC cell lines MiaPaCa-2 and PANC-1 were distinctly sensitive to TSA, with enhanced apoptosis, compared to SAHA. TSA or SAHA inhibited vimentin, HDACs 1, 7 and 8, upregulated E-cadherin mRNA and protein levels in the PDAC cells, and time-dependently downregulated Oct-4, Sox-2, and Nanog, as well as inhibited PDAC tumorsphere formation. TSA also induces accumulation of acetylated histones, while increasing histone 3 lysine 4 or 9 dimethylation levels in PDAC cells and enhancing the epigenetic activity of SAHA. The anti-CSCs effect of TSA was like that obtained by silencing HDAC-1 or 7 using siRNA, and enhances Gemcitabine activity. Our study highlights the molecular targetability of HDACs 1, 7, and 8, confirm their PDAC-CSCs maintaining role, and demonstrate that compared to SAHA, TSA modulates the epigenetically- mediated oncogenic activity of PDAC-CSCs, and potentiate Gemcitabine therapeutic activity, making a case for further exploration of TSA activity alone or in combination with Gemcitabine in PDAC therapy.


Subject(s)
Antimetabolites, Antineoplastic/metabolism , Deoxycytidine/analogs & derivatives , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylases/metabolism , Hydroxamic Acids/metabolism , Neoplastic Stem Cells/drug effects , Pancreatic Neoplasms/pathology , Apoptosis , Cell Line, Tumor , Cell Survival/drug effects , Deoxycytidine/metabolism , Humans , Neoplastic Stem Cells/physiology , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...