Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 361
Filter
1.
BMC Musculoskelet Disord ; 25(1): 551, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014378

ABSTRACT

BACKGROUND: The high prevalence of diabetic kidney disease (DKD) in the United States necessitates further investigation into its impact on complications associated with total hip arthroplasty (THA). This study utilizes a large nationwide database to explore risk factors in DKD cases undergoing THA. METHODS: This research utilized a case-control design, leveraging data from the national inpatient sample for the years 2016 to 2019. Employing propensity score matching (PSM), patients diagnosed with DKD were paired on a 1:1 basis with individuals free of DKD, ensuring equivalent age, sex, race, Elixhauser Comorbidity Index (ECI), and insurance coverage. Subsequently, comparisons were drawn between these PSM-matched cohorts, examining their characteristics and the incidence of post-THA complications. Multivariate logistic regression analysis was then employed to evaluate the risk of early complications after surgery. RESULTS: DKD's prevalence in the THA cohort was 2.38%. A 7-year age gap separated DKD and non-DKD patients (74 vs. 67 years, P < 0.0001). Additionally, individuals aged above 75 exhibited a substantial 22.58% increase in DKD risk (49.16% vs. 26.58%, P < 0.0001). Notably, linear regression analysis yielded a significant association between DKD and postoperative acute kidney injury (AKI), with DKD patients demonstrating 2.274-fold greater odds of AKI in contrast with non-DKD individuals (95% CI: 2.091-2.473). CONCLUSIONS: This study demonstrates that DKD is a significant risk factor for AKI in patients undergoing total hip arthroplasty. Optimizing preoperative kidney function through appropriate interventions might decrease the risk of poor prognosis in this population. More prospective research is warranted to investigate the potential of targeted kidney function improvement strategies in reducing AKI rates after THA. The findings of this study hold promise for enhancing preoperative counseling by surgeons, enabling them to provide DKD patients undergoing THA with more precise information regarding the risks associated with their condition.


Subject(s)
Arthroplasty, Replacement, Hip , Databases, Factual , Diabetic Nephropathies , Postoperative Complications , Humans , Arthroplasty, Replacement, Hip/adverse effects , Male , Female , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Aged , Middle Aged , Diabetic Nephropathies/epidemiology , Case-Control Studies , United States/epidemiology , Risk Factors , Elective Surgical Procedures/adverse effects , Elective Surgical Procedures/trends , Prevalence , Aged, 80 and over , Incidence
2.
Endoscopy ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39053503

ABSTRACT

BACKGROUND: Colonoscopy is essential for diagnosing colorectal diseases but can cause pain during the procedure. This study explores the analgesic effects of Transcutaneous Electrical Nerve Stimulation based on Wrist-Ankle Acupuncture theory (TENS-WAA) in non-anesthetic colonoscopy. METHODS: This prospective study included 120 participants undergoing non-anesthetic colonoscopies. The trial group receiving low-frequency, high-intensity TENS-WAA adjusted to the maximum tolerable current, while the control group received minimal current. Primary outcome was the retrospective pain VAS score. Secondary outcomes included time, heart rate, and credibility/expectancy questionnaire (CEQ) scores (ChiCTR2300076524). RESULTS: Participants who received TENS-WAA intervention reported significantly lower pain VAS scores than the control group (estimated median difference -1.1, 95% CI: -2 to -0.4, P=0.002). Male participants in the trial group experienced significantly lower pain scores than the control group (mean difference -1.4, 95% CI: -2.41 to -0.39, P=0.008). Additionally, the trial group also had significantly lower heart rates (P<0.001) and higher CEQ scores (P=0.001) than the control group. No adverse events were reported. CONCLUSION: TENS-WAA effectively reduces pain during non-anesthetized colonoscopy, especially in male participants, providing a promising non-invasive analgesic method.

3.
Nutrients ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999809

ABSTRACT

Globally, cognitive impairment (CI) is the leading cause of disability and dependency among the elderly, presenting a significant public health concern. However, there is currently a deficiency in pharmacological interventions that can effectively cure or significantly reverse the progression of cognitive impairment. Methyl donor nutrients (MDNs), including folic acid, choline, and vitamin B12, have been identified as potential enhancers of cognitive function. Nevertheless, there remains a dearth of comprehensive research investigating the connection between the dietary intake of MDNs and CI. In our study, we comprehensively assessed the relationship between MDNs' dietary intake and CI in older adults, utilizing 16S rRNA gene sequencing to investigate the potential underlying mechanisms. The results showed an obvious difference in the methyl-donor nutritional quality index (MNQI) between the dementia (D) group and the dementia-free (DF) group. Specifically, there was a lower MNQI in the D group than that in the DF group. For the gut microbiome, the beta diversity of gut flora exhibited higher levels in the high methyl-donor nutritional quality (HQ) group as opposed to the low methyl-donor nutritional quality (LQ) group, and lower levels in the D group in comparison to the DF group. Subsequently, we performed a correlation analysis to examine the relationship between the relative abundance of microbiota, the intake of MDNs, and Montreal Cognitive Assessment (MoCA) scores, ultimately identifying ten genera with potential regulatory functions. Additionally, KEGG pathway analyses suggested that the one-carbon metabolism, chronic inflammation, and DNA synthesis potentially serve as pathways through which MDNs may be promising for influencing cognitive function. These results implied that MDNs might have the potential to enhance cognitive function through the regulation of microbiota homeostasis. This study offers dietary recommendations for the prevention and management of CI in the elderly.


Subject(s)
Choline , Cognitive Dysfunction , Folic Acid , Gastrointestinal Microbiome , Vitamin B 12 , Humans , Aged , Male , Female , Choline/administration & dosage , Folic Acid/administration & dosage , Vitamin B 12/administration & dosage , Diet/methods , Aged, 80 and over , RNA, Ribosomal, 16S , Nutrients , Cognition/drug effects , Nutritive Value
4.
Cancer Res ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037758

ABSTRACT

Breast cancer is a global public health concern with high mortality rates, necessitating the development of innovative treatment strategies. PARP inhibitors have shown efficacy in certain patient populations, but their application is largely limited to cancers with homologous recombination deficiency. Here, we identified the suppression of FANCI as a therapeutic strategy to enhance the efficacy of PARP inhibitors in breast cancer. Elevated FANCI expression in breast cancer was associated with poor prognosis and increased cell proliferation and migration. FANCI interacted with PARP1, and suppressing FANCI limited the nuclear localization and functionality of PARP1. Importantly, FANCI inhibition sensitized breast cancer cells to the PARP inhibitor talazoparib in the absence of BRCA mutations. Additionally, the CDK4/6 inhibitor palbociclib enhanced the sensitivity of breast cancer cells to talazoparib through FANCI inhibition. These findings highlight the potential of targeting FANCI to enhance the efficacy of PARP inhibitors in treating breast cancer.

5.
J Pain Res ; 17: 2299-2309, 2024.
Article in English | MEDLINE | ID: mdl-38974827

ABSTRACT

Objective: To determine the risk of postherpetic neuralgia (PHN) in patients with acute herpes zoster (HZ), this study developed and validated a novel clinical prediction model by incorporating a relevant peripheral blood inflammation indicator. Methods: Between January 2019 and June 2023, 209 patients with acute HZ were categorized into the PHN group (n = 62) and the non-PHN group (n = 147). Univariate and multivariate logistic regression analyses were conducted to identify risk factors serving as independent predictors of PHN development. Subsequently, a nomogram prediction model was established, and the discriminative ability and calibration were evaluated using the receiver operating characteristic curve, calibration plots, and decision curve analysis (DCA). The nomogram model was internally verified through the bootstrap test method. Results: According to univariate logistic regression analyses, five variables, namely age, hypertension, acute phase Numeric Rating Scale (NRS-11) score, platelet-to-lymphocyte ratio (PLR), and systemic immune inflammation index, were significantly associated with PHN development. Multifactorial analysis further unveiled that age (odds ratio (OR) [95% confidence interval (CI)]: 2.309 [1.163-4.660]), acute phase NRS-11 score (OR [95% CI]: 2.837 [1.294-6.275]), and PLR (OR [95% CI]: 1.015 [1.010-1.022]) were independent risk factors for PHN. These three predictors were integrated to establish the prediction model and construct the nomogram. The area under the receiver operating characteristic curve (AUC) for predicting the PHN risk was 0.787, and the AUC of internal validation determined using the bootstrap method was 0.776. The DCA and calibration curve also indicated that the predictive performance of the nomogram model was commendable. Conclusion: In this study, a risk prediction model was developed and validated to accurately forecast the probability of PHN after HZ, thereby demonstrating favorable discrimination, calibration, and clinical applicability.

6.
Adv Sci (Weinh) ; : e2402448, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877647

ABSTRACT

The utilization of diverse energy storage devices is imperative in the contemporary society. Taking advantage of solar power, a significant environmentally friendly and sustainable energy resource, holds great appeal for future storage of energy because it can solve the dilemma of fossil energy depletion and the resulting environmental problems once and for all. Recently, photo-assisted energy storage devices, especially photo-assisted rechargeable metal batteries, are rapidly developed owing to the ability to efficiently convert and store solar energy and the simple configuration, as well as the fact that conventional Li/Zn-ion batteries are widely commercialized. Considering many puzzles arising from the rapid development of photo-assisted rechargeable metal batteries, this review commences by introducing the fundamental concepts of batteries and photo-electrochemistry, followed by an exploration of the current advancements in photo-assisted rechargeable metal batteries. Specifically, it delves into the elucidation of device components, operating principles, types, and practical applications. Furthermore, this paper categorizes, specifies, and summarizes several detailed examples of photo-assisted energy storage devices. Lastly, it addresses the challenges and bottlenecks faced by these energy storage systems while providing future perspectives to facilitate their transition from laboratory research to industrial implementation.

7.
Cell Rep ; 43(6): 114351, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923465

ABSTRACT

Klebsiella pneumoniae carbapenemase (KPC) poses a major public health risk. Understanding its transmission dynamics requires examining the epidemiological features of related plasmids. Our study compiled 15,660 blaKPC-positive isolates globally over the past two decades. We found extensive diversity in the genetic background of KPC, with 23 Tn4401-related and 341 non-Tn4401 variants across 163 plasmid types in 14 genera. Intra-K. pneumoniae and cross-genus KPC transmission patterns varied across four distinct periods. In the initial periods, plasmids with narrow host ranges gradually established a survival advantage. In later periods, broad-host-range plasmids became crucial for cross-genera transmission. In total, 61 intra-K. pneumoniae and 66 cross-genus transmission units have been detected. Furthermore, phylogenetic reconstruction dated the origin of KPC transmission back to 1991 and revealed frequent exchanges across countries. Our research highlights the frequent and transient spread events of KPC mediated by plasmids across multiple genera and offers theoretical support for high-risk plasmid monitoring.


Subject(s)
Bacterial Proteins , Klebsiella pneumoniae , Phylogeny , Plasmids , beta-Lactamases , Plasmids/genetics , Plasmids/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Klebsiella Infections/transmission , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology
8.
Food Funct ; 15(12): 6335-6346, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38832472

ABSTRACT

Currently, sleep disorders (SD) in the elderly are gaining prominence globally and are becoming a significant public health concern. Methyl donor nutrients (MDNs), such as vitamin B6, vitamin B12, folate, and choline, have been reported to have the potential to improve sleep disorders. Moreover, MDNs help to maintain gut flora homeostasis, and are closely associated with the development of SD. Nevertheless, there has been a lack of comprehensive human studies examining the association between MDNs intake and SD. In our study, we comprehensively evaluated the association between MDNs intake and SD in the elderly and used 16S rRNA gene sequencing to explore the underlying mechanism. We found that the SD group (n = 91) had a lower methyl-donor nutritional quality index (MNQI) and a trend toward lower intake compared to the control group (n = 147). Based on the intestinal microbiome, the beta diversity of the intestinal flora was higher in the high methyl-donor nutritional quality (HQ) group compared to the low methyl-donor nutritional quality (LQ) group, and it was lower in the SD group compared to the control group. This suggests that MDNs may regulate sleep by modulating the abundance distribution of the microbiota. Subsequently, we performed correlation analyses between the relative abundance of the microbiota, MDNs intake, and the Pittsburgh Sleep Quality Index (PSQI), identifying five genera with potential regulatory roles. The KEGG pathway analysis indicated that energy metabolism and one-carbon metabolism might be the pathways through which MDNs modulate sleep. This study offers dietary guidance strategies for managing SD in the elderly and provides insights for targeted microbiota intervention.


Subject(s)
Gastrointestinal Microbiome , Sleep Wake Disorders , Humans , Aged , Female , Male , Sleep Wake Disorders/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Vitamin B 6 , Vitamin B 12 , Folic Acid/metabolism , Choline/metabolism , RNA, Ribosomal, 16S/genetics , Nutrients , Middle Aged , Diet , Aged, 80 and over
9.
ChemistryOpen ; : e202400061, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884376

ABSTRACT

RATIONALE: Quinolone antibiotics are extensively used clinically for human treatment and in agriculture. However, improper and excessive use can lead to the persistence of quinolone residues in animal tissues, potentially accumulating in the human body and posing health risks. Investigating the correlation between mass spectrometry cleavage patterns and molecular structural features enhances the analytical framework for detecting trace or unknown impurities in quinolones. METHODS: To collect data, we employed triple quadrupole linear ion trap mass spectrometry in electrospray positive ion mode. Primary mass spectrometry scanning was utilized to confirm parent ions, while secondary mass spectrometry scanning enabled the observation of fragment ions. The cleavage characteristics and pathways of the compounds were inferred from accurate mass-to-charge ratios obtained from both primary and secondary mass spectrometry. RESULTS: Under soft ionization conditions, the compounds generally exhibited characteristic fragment ions of [M+H-H2O]+, [M+H-CO]+, and [M+H-H2O-CO]+. Additionally, subtle variations were observed in each compound due to differences in modifying groups. For instance, upon deacidification, the piperazine ring structure underwent breakage and rearrangement, yielding fragment ion peaks devoid of neutral molecules such as C2H5N, C3H7N, or C4H8N. Notably, compounds featuring a cyclopropyl substituent group at the N-1 position typically exhibited characteristic fragments resulting from the loss of the cyclopropyl radical (⋅C3H5). Moreover, substituents at the N-1 and C-8 positions, when linked to form a six-membered carbocyclic ring, were prone to cleavage, releasing the neutral C3H6 molecule. CONCLUSION: Quinolone antibiotics share structural similarities in their parent nuclei, leading to partially similar cleavage pathways. Nevertheless, distinct cleavage patterns emerge due to variations in functional groups. According to the difference of mass spectrometry cleavage patterns, it can provide an identification basis for the measured detection of antibiotics.

10.
Small ; : e2401503, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705860

ABSTRACT

Fungicides have been widely used to protect crops from the disease of pythium aphanidermatum (PA). However, excessive use of synthetic fungicides can lead to fungal pathogens developing microbicide resistance. Recently, biomimetic nano-delivery systems have been used for controlled release, reducing the overuse of fungicides, and thereby protecting the environment. In this paper, inspired by chloroplast membranes, visible light biomimetic channels are constructed by using retinal, the main component of green pigment on chloroplasts in plants, which can achieve the precise controlled release of the model fungicide methylene blue (MB). The experimental results show that the biomimetic channels have good circularity after and before light conditions. In addition, it is also found that the release of MB in visible light by the retinal-modified channels is 8.78 µmol·m-2·h-1, which is four times higher than that in the before light conditions. Furthermore, MB, a bactericide drug model released under visible light, can effectively inhibit the growth of PA, reaching a 97% inhibition effect. The biomimetic nanochannels can realize the controlled release of the fungicide MB, which provides a new way for the treatment of PA on the leaves surface of cucumber, further expanding the application field of biomimetic nanomembrane carrier materials.

11.
Nutrients ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732590

ABSTRACT

Nucleotides (NTs), important biomolecules involved in numerous cellular processes, have been proposed as potential candidates for anti-aging interventions. However, whether nucleotides can act as an anti-aging supplement in older adults remains unclear. TALENTs is a randomized, double-blinded, placebo-controlled trial that evaluates the efficacy and safety of NTs as an anti-aging supplement in older adults by exploring the effects of NTs on multiple dimensions of aging in a rigorous scientific setting. Eligible community-dwelling adults aged 60-70 years were randomly assigned equally to two groups: nucleotides intervention group and placebo control group. Comprehensive geriatric health assessments were performed at baseline, 2-months, and 4-months of the intervention. Biological specimens were collected and stored for age-related biomarker testing and multi-omics sequencing. The primary outcome was the change from baseline to 4 months on leukocyte telomere length and DNA methylation age. The secondary aims were the changes in possible mechanisms underlying aging processes (immunity, inflammatory profile, oxidative stress, gene stability, endocrine, metabolism, and cardiovascular function). Other outcomes were changes in physical function, body composition and geriatric health assessment (including sleep quality, cognitive function, fatigue, frailty, and psychology). In the RCT, 301 participants were assessed for eligibility and 122 were enrolled. Participants averaged 65.65 years of age, and were predominately female (67.21%). All baseline characteristics were well-balanced between groups, as expected due to randomization. The majority of participants were pre-frailty and had at least one chronic condition. The mean scores for physical activity, psychological, fatigue and quality of life were within the normal range. However, nearly half of the participants still had room for improvement in cognitive level and sleep quality. This TALENTs trial will represent one of the most comprehensive experimental clinical trials in which supplements are administered to elderly participants. The findings of this study will contribute to our understanding of the anti-aging effects of NTs and provide insights into their potential applications in geriatric healthcare.


Subject(s)
Aging , Longevity , Nucleotides , Humans , Aged , Female , Male , Aging/physiology , Middle Aged , Double-Blind Method , Dietary Supplements , Geriatric Assessment/methods , DNA Methylation/drug effects , Telomere/drug effects , Leukocytes
12.
Int J Biol Macromol ; 269(Pt 1): 132041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705315

ABSTRACT

Hemocyanin, an oxygen-transport protein, is widely distributed in the hemolymph of marine arthropods and mollusks, playing an important role in their physiological processes. Recently, hemocyanin has been recognized as a multifunctional glycoprotein involved in the immunological responses of aquatic invertebrates. Consequently, the link between hemocyanin functions and their potential applications has garnered increased attention. This review offers an integrated overview of hemocyanin's structure, physicochemical characteristics, and bioactivities to further promote the utilization of hemocyanin derived from marine products. Specifically, we review its implication in two aspects of food and aquaculture industries: quality and health. Hemocyanin's inducible phenoloxidase activity is thought to be an inducer of melanosis in crustaceans. New anti-melanosis agents targeted to hemocyanin need to be explored. The red-color change observed in shrimp shells is related to hemocyanin, affecting consumer preferences. Hemocyanin's adaptive modification in response to the aquatic environment is available as a biomarker. Additionally, hemocyanin is endowed with bioactivities encompassing anti-microbial, antiviral, and therapeutic activities. Hemocyanin is also a novel allergen and its allergenic features remain incompletely characterized.


Subject(s)
Hemocyanins , Hemocyanins/chemistry , Animals , Food Industry , Aquatic Organisms/chemistry , Humans
13.
Virol Sin ; 39(3): 403-413, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636706

ABSTRACT

The pseudorabies virus (PRV) is identified as a double-helical DNA virus responsible for causing Aujeszky's disease, which results in considerable economic impacts globally. The enzyme tryptophanyl-tRNA synthetase 2 (WARS2), a mitochondrial protein involved in protein synthesis, is recognized for its broad expression and vital role in the translation process. The findings of our study showed an increase in both mRNA and protein levels of WARS2 following PRV infection in both cell cultures and animal models. Suppressing WARS2 expression via RNA interference in PK-15 â€‹cells led to a reduction in PRV infection rates, whereas enhancing WARS2 expression resulted in increased infection rates. Furthermore, the activation of WARS2 in response to PRV was found to be reliant on the cGAS/STING/TBK1/IRF3 signaling pathway and the interferon-alpha receptor-1, highlighting its regulation via the type I interferon signaling pathway. Further analysis revealed that reducing WARS2 levels hindered PRV's ability to promote protein and lipid synthesis. Our research provides novel evidence that WARS2 facilitates PRV infection through its management of protein and lipid levels, presenting new avenues for developing preventative and therapeutic measures against PRV infections.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Tryptophan-tRNA Ligase , Virus Replication , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/genetics , Animals , Cell Line , Swine , Tryptophan-tRNA Ligase/metabolism , Tryptophan-tRNA Ligase/genetics , Pseudorabies/virology , Pseudorabies/metabolism , Signal Transduction , Mitochondria/metabolism , Host-Pathogen Interactions , Mice
14.
Br J Cancer ; 130(11): 1819-1827, 2024 May.
Article in English | MEDLINE | ID: mdl-38594370

ABSTRACT

BACKGROUND: Although DHFR gene amplification has long been known as a major mechanism for methotrexate (MTX) resistance in cancer, the early changes and detailed development of the resistance are not yet fully understood. METHODS: We performed genomic, transcriptional and proteomic analyses of human colon cancer cells with sequentially increasing levels of MTX-resistance. RESULTS: The genomic amplification evolved in three phases (pre-amplification, homogenously staining region (HSR) and extrachromosomal DNA (ecDNA)). We confirm that genomic amplification and increased expression of DHFR, with formation of HSRs and especially ecDNAs, is the major driver of resistance. However, DHFR did not play a detectable role in the early phase. In the late phase (ecDNA), increase in FAM151B protein level may also have an important role by decreasing sensitivity to MTX. In addition, although MSH3 and ZFYVE16 may be subject to different posttranscriptional regulations and therefore protein expressions are decreased in ecDNA stages compared to HSR stages, they still play important roles in MTX resistance. CONCLUSION: The study provides a detailed evolutionary trajectory of MTX-resistance and identifies new targets, especially ecDNAs, which could help to prevent drug resistance. It also presents a proof-of-principal approach which could be applied to other cancer drug resistance studies.


Subject(s)
Drug Resistance, Neoplasm , Gene Amplification , Methotrexate , Tetrahydrofolate Dehydrogenase , Humans , Methotrexate/pharmacology , Drug Resistance, Neoplasm/genetics , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Antimetabolites, Antineoplastic/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Genomics/methods
16.
Sensors (Basel) ; 24(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475055

ABSTRACT

The study aims to construct an inertial measuring system for the application of amputee subjects wearing a prosthesis. A new computation scheme to process inertial data by installing seven wireless inertial sensors on the lower limbs was implemented and validated by comparing it with an optical motion capture system. We applied this system to amputees to verify its performance for gait analysis. The gait parameters are evaluated to objectively assess the amputees' prosthesis-wearing status. The Madgwick algorithm was used in the study to correct the angular velocity deviation using acceleration data and convert it to quaternion. Further, the zero-velocity update method was applied to reconstruct patients' walking trajectories. The combination of computed walking trajectory with pelvic and lower limb joint motion enables sketching the details of motion via a stickman that helps visualize and animate the walk and gait of a test subject. Five participants with above-knee (n = 2) and below-knee (n = 3) amputations were recruited for gait analysis. Kinematic parameters were evaluated during a walking test to assess joint alignment and overall gait characteristics. Our findings support the feasibility of employing simple algorithms to achieve accurate and precise joint angle estimation and gait parameters based on wireless inertial sensor data.


Subject(s)
Amputees , Artificial Limbs , Humans , Gait , Walking , Amputation, Surgical , Knee , Knee Joint , Biomechanical Phenomena
17.
Materials (Basel) ; 17(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38399114

ABSTRACT

In the process of constructing deep natural gas wells in Sichuan and Chongqing, gas wells encounter various technical challenges such as high temperature, high pressure, and a corrosive environment containing H2S and CO2. The corrosion of rubber materials in these acidic environments can easily lead to seal failure in downhole tools. To better investigate the corrosion resistance of rubber materials in acidic environments, we utilized a dynamic cyclic corrosion experimental device capable of simulating the service conditions experienced by downhole tools under high-temperature, high-pressure multiphase flow. Corrosion-resistance tests were conducted on fluororubbers (FKM) 1, 2, 3, and HNBR (hydrogenated nitrile-butadiene rubber) under acidic conditions (80 °C and 160 °C), along with sealing corrosion tests on O-rings. These tests aimed to analyze the mechanical properties, hardness, and corrosion resistance before and after exposure to acid media as well as the sealing performance of O-rings. Ultimately, our goal was to identify suitable rubber materials for acidic pressure environments. Experimental results revealed that all four types of rubber exhibited decreased elongation at break after undergoing corrosion testing; however, fluororubber 3 demonstrated significant susceptibility to temperature effects while the other three types showed minimal impact from temperature variations. Fluororubber 1 and fluororubber 3 displayed substantial deformation levels whereas mechanical properties greatly deteriorated for fluororubber 2. Overall, HNBR showcased superior comprehensive performance.

18.
J Clin Pathol ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346865

ABSTRACT

AIMS: Human epidermal growth factor receptor 2 (HER2)-positive patients with breast cancer may have different HER2/CEP17 ratios and HER2 copy numbers, with inconsistent responses to anti-HER2 neoadjuvant chemotherapy (NACT). Our study aimed to explore the relationship between different HER2 fluorescence in situ hybridisation (FISH) patterns in HER2-positive patients with breast cancer and responses to anti-HER2 NACT. METHODS: 527 patients with HER2-positive invasive breast cancer who received anti-HER2 NACT from 2015 to 2022 were included and divided into three groups by FISH results, namely group A: HER2/CEP17<2.0 and HER2 copy numbers ≥6.0, HER2 immunohistochemistry 2/3+; group B: HER2/CEP17≥2.0 and HER2 copy numbers ≥4.0 and <6.0; group C: HER2/CEP17≥2.0 and HER2 copy numbers ≥6.0. We compared clinicopathological characteristics and pathological complete response (pCR) rates of different groups. RESULTS: According to HER2 FISH results, 12 patients (2.3%, 12/527) were in group A, 40 (7.6%, 40/527) were in group B and 475 (90.1%, 475/527) were in group C. The pCR rate was the lowest in group B (5.0%), while the pCR rates in group A and group C were 33.3% and 44.4%, respectively (p (group A vs. B) =0.021, p (group C vs. B) < 0.001). Both univariate and multivariate analyses revealed that HER2 FISH pattern was correlated with pCR rate (p (group C vs. B) < 0.001, p (group C vs. B) = 0.025). CONCLUSIONS: Patients with HER2/CEP17≥2.0 and HER2 copy numbers ≥4.0 and <6.0 do not benefit to the same extent from current anti-HER2 therapies as FISH-positive patients with other patterns.

19.
J Neurol ; 271(4): 1747-1766, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286842

ABSTRACT

Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is an inflammatory syndrome with characteristic clinical, radiological, and pathological features, and can be effectively treated with corticosteroid-based immunotherapies. The exact pathogenesis of CLIPPERS remains unclear, and specific diagnostic biomarkers are not available. According to the 2017 diagnostic criteria, probable CLIPPERS should be considered in middle-aged patients with subacute onset of pontocerebellar symptoms and typical punctuate and curvilinear gadolinium enhancement lesions ("salt-and-pepper" appearance) located in the hindbrain (especially pons) on magnetic resonance imaging. In addition, CLIPPERS-mimics, such as central nervous system (CNS) lymphoma, and several antibody-associated autoimmune CNS diseases (e.g., myelin oligodendrocyte glycoprotein antibody-associated disease, autoimmune glial fibrillary acidic protein astrocytopathy, and anti-N-methyl-D-aspartate receptor encephalitis), should be extensively excluded. The prerequisite for definite CLIPPERS is the perivascular T-cell-predominant inflammatory infiltration observed on pathological analysis. A biopsy is strongly suggested when clinical/radiological red flags are present. Most patients with CLIPPERS respond well to corticosteroids and have a good prognosis. Long-term low-dose corticosteroid maintenance therapy or corticosteroids coupled with immunosuppressants are recommended to prevent the recurrence of the syndrome. The potential progression of CLIPPERS to lymphoma has been suggested in some cases; therefore, at least 2-year clinical and radiological follow-up is essential. Here, we critically review the recent developments and provided an update on the clinical characteristics, diagnostic criteria, differential diagnoses, and therapeutic management of CLIPPERS. We also discuss the current controversies in this context that can be resolved in future research studies.


Subject(s)
Central Nervous System Neoplasms , Lymphoma , Middle Aged , Humans , Contrast Media/therapeutic use , Gadolinium , Inflammation/complications , Steroids/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Magnetic Resonance Imaging/methods , Pons/pathology , Central Nervous System Neoplasms/pathology , Lymphoma/complications
20.
Chemistry ; 30(18): e202303742, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38214487

ABSTRACT

Excess fluoride ions in groundwater accumulate through the roots of crops, affecting photosynthesis and inhibiting their growth. Long-term bioaccumulation also threatens human health because it is poorly degradable and toxic. Currently, one of the biggest challenges is developing a unique material that can efficiently remove fluoride ions from the environment. The excellent properties of functionalized pillar[5]arene polymer-filled nanochannel membranes were explored to address this challenge. Constructing a multistage porous nanochannel membrane, consisting of microscale etched nanochannels and nanoscale pillar[5]arene cross-linked polymer voids. A fluoride removal rate of 0.0088 mmol ⋅ L-1 ⋅ min-1 was achieved. Notably, this rate surpassed the rates observed with other control ions by a factor of 6 to 8.8. Our research provides a new direction for developing water fluoride ion removal materials.

SELECTION OF CITATIONS
SEARCH DETAIL