Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(11): 17417-17425, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38337116

ABSTRACT

Wastewater treatment plants (WWTPs) are one of the most important sources and sinks for per- and polyfluoroalkyl substances (PFAS). However, limited studies have evaluated short-term temporal variability of PFAS in WWTPs, particularly for their intra-day variations. For this purpose, a time-composite sampling campaign was carried out at a WWTP influent from South China for 1 week. Five out of ten PFAS were found in the influent, i.e., perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorobutane sulfonic acid (PFBS), and perfluorooctanesulfonic acid (PFOS). PFOA was the most domain PFAS whereas PFOS was detected occasionally, which might be associated with the prohibition of PFOS use in China. For the first time, we observed significant intra-day fluctuations in mass fluxes for PFOS. Different from a morning peak of pharmaceuticals reported previously, PFOS mass loads fluctuated sharply at noon and night on the weekdays. Furthermore, the mass fluxes of PFOA on the weekend were significantly elevated. For the other PFAS detected, no significant diurnal variations in mass loads were identified. Correlation analysis indicated that domestic activities (e.g., home cleaning) are likely to be the major source of these perfluorocarboxylic acids especially PFOA. In addition, flow fluxes had little effects on these PFAS mass load. These results can aid in future sampling campaigns and optimizing removal strategies for PFAS in wastewater.


Subject(s)
Alkanesulfonic Acids , Caprylates , Fluorocarbons , Water Purification , Wastewater , Fluorocarbons/analysis , China
2.
Water Res ; 206: 117752, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34695670

ABSTRACT

Melamine has received increasing public attention as a persistent, mobile and toxic (PMT) substance. To better assess environmental exposure and risks of melamine and related triazines (cyromazine, ammeline, and atrazine), a new passive sampling method based on the diffusive gradients in thin films (DGT) technique has been developed and validated in this study. The studied triazines were adsorbed quickly and strongly by the selected mixed cation exchange (MCX) binding gels. This MCX-DGT can linearly accumulate these chemicals over at least 5 days, with neither significant individual influence from pH (6-8), ionic strength (0.01-0.5 M) or dissolved organic matter (0-10 M), or interaction effects. Field applications in Southern China showed that DGT performed well in both sewage treatment plant (STP) and river samples. Melamine was found to be the dominant triazine with the concentrations at µg·L-1 in the STP and receiving river. Surprisingly, much higher concentration of melanine was found in the STP effluent than influent, and appeared to be some of the highest concentrations reported in STPs worldwide to date. Comparable melamine and atrazine concentraions in the STP effluent and receiving river suggested other sources to the river. The MCX-DGT sampler developed here was demonstrated to be reliable and robust for measuring the triazines in waters, and is promising as an in situ tool in understanding the occurrence, sources, and fate of the emerging PMT substances in aquatic environment.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Diffusion , Triazines , Wastewater/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL