Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; : 134998, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181368

ABSTRACT

Grifola frondosa has garnered significant popularity as an edible mushroom attributable to its exceptional taste and nutritional benefits. This study isolated APPLRP, a potent ACE-inhibitory peptide, from the alcohol-soluble fraction of Grifola frondosa. The underlying mechanisms of APPLRP in antihypertension were explored through computational chemistry, cell experiments, and zebrafish model. Results demonstrated that APPLRP was an active competitive ACE inhibitor (IC50 = 29.93 µM) that could bind to the active pocket S2 and S1' of ACE. APPLRP exhibited resistance to pepsin and pancreatin digestion. In vitro experiments revealed that APPLRP significantly attenuated Ang II-induced VSMCs proliferation and migration by down-regulating AT1R expression and inhibiting ERK1/2 and STAT3 phosphorylation. APPLRP intervention significantly ameliorated myocardial fibrosis, as evidenced by reductions in cardiac output, blood flow velocity, and cardiac collagen deposition levels in Ang II-induced hypertensive zebrafish model. Furthermore, APPLRP improved vascular remodeling in hypertensive zebrafish, indicated by increased vessel diameter and decreased vessel wall thickness. Notably, APPLRP treatment resulted in down-regulation of ACE and up-regulation of ACE2 expression in the vessels of hypertensive zebrafish. These findings indicated that APPLRP was a representative component of Grifola frondosa peptides, and its antihypertensive effects were associated with ACE inhibition and the improvement of VSMCs-mediated vascular remodeling.

2.
Food Funct ; 15(5): 2485-2496, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38334682

ABSTRACT

Hypertension-induced kidney injury is considered a vital consequence of long-term and uncontrolled hypertension, which is commonly associated with an excessive accumulation of angiotensin II (Ang II) from hyperactivated RAS. Antihypertensive peptides have a significant effect on blood pressure regulation, but few studies have focused on the ameliorative function of antihypertensive peptides on renal injury. This study explored the effects of soybean protein-derived hydrolysate (SPH) on SHR and Ang II-induced HK-2 cells. SPH significantly attenuated blood pressure and alleviated renal pathological injury in SHRs after oral gavage administration. According to the pathological results, the kidneys of SHRs showed inflammation and SPH attenuated inflammatory cell infiltration in the kidneys of SHRs. Immunohistochemical analysis further revealed that SPH inhibited MCP-1 expression and increased Nrf2 expression in the kidneys. An in vitro HK-2 cell model demonstrated that SPH exhibited optimal activity for reducing Ang II-induced inflammatory cytokines and ROS overproduction. Mechanistically, SPH was observed to regulate MAPK/JNK and NF-κB signaling pathways. These findings indicate that potent antihypertensive SPH significantly ameliorates hypertension-induced kidney damage.


Subject(s)
Hypertension , NF-kappa B , NF-kappa B/genetics , NF-kappa B/metabolism , Antihypertensive Agents/pharmacology , Angiotensin II/metabolism , Glycine max , Kidney , Signal Transduction , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/metabolism
3.
Adv Physiol Educ ; 39(4): 254-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26628645

ABSTRACT

Pathophysiology is a scientific discipline that studies the onset and progression of pathological conditions and diseases, and pathophysiology is one of the core courses in most preclinical medical curricula. In China, most medical schools house a Department of Pathophysiology, in contrast to medical schools in many developed countries. The staff in Chinese Departments of Pathophysiology generally consists of full-time instructors or lecturers who teach medical students. These lecturers are sometimes lacking in clinic knowledge and experiences. To overcome this, in recent years, we have been trying to bring new trends in teaching pathophysiology into our curriculum. Our purpose in writing this article was to share our experiences with our colleagues and peers worldwide in the hope that the insights we have gained in pathophysiology teaching will be of some value to educators who advocate teaching reform in medical schools.


Subject(s)
Disease , Education, Medical, Undergraduate/methods , Pathology/education , Physiology/education , Schools, Medical , Teaching/methods , China , Curriculum , Disease/history , Education, Medical, Undergraduate/history , Education, Medical, Undergraduate/organization & administration , History, 20th Century , History, 21st Century , Humans , Pathology/history , Physiology/history , Program Development , Schools, Medical/history , Schools, Medical/organization & administration , Teaching/history , Teaching/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL