Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Res Vet Sci ; 165: 105048, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37866007

ABSTRACT

BACKGROUND: Brucellosis, a neglected and global zoonotic disease, infect a variety of mammals, among which sheep are one of the main hosts. This disease results in huge economic losses and is a widespread concern around the world. RESULT: Based on the selection criteria, 40 articles from 2010 to 2021 of five databases (CNKI, Wanfang, VIP, PubMed and Science Direct) reported in America, Africa and Asia were included. The data showed that during this period, the overall seroprevalence of sheep brucellosis on these three continents was 6.2%. At the regional level, sheep brucellosis had the highest seroprevalence (8.5%) in Africa and the lowest seroprevalence (1.9%) in the Americas. With regard to the age of the sheep, the seroprevalence was significantly higher in adult sheep (15.5%) than in lambs (8.6%). Further, the seroprevalence was significantly higher in sheep that had abortion (44.3%) than in pregnant (13.0%) and non-pregnant sheep (9.5%). With regard to herd size, herds with >20 sheep (35.4%) had a significantly higher seroprevalence than herds with <20 sheep (16.8%). In terms of farming and grazing mode, free-range rearing (8.4%) was associated with a significantly higher seroprevalence than intensive farming (2.8%), and mixed grazing (37.0%) was associated with a significantly higher seroprevalence than single grazing (5.7%). CONCLUSION: Sheep brucellosis is widely distributed in sheep-rearing regions of America, Africa and Asia, and sheep are susceptible to brucellosis by themselves or from other infectious sources. Therefore, timely monitoring of ovine brucellosis and improving farming and grazing patterns are critical to reducing the prevalence of brucellosis.


Subject(s)
Brucellosis , Goat Diseases , Sheep Diseases , Pregnancy , Female , Animals , Sheep , Seroepidemiologic Studies , Goats , Sheep Diseases/epidemiology , Sheep Diseases/etiology , Goat Diseases/epidemiology , Brucellosis/epidemiology , Brucellosis/veterinary , Risk Factors , Asia , Africa/epidemiology , Animal Husbandry
2.
Microbiol Spectr ; : e0530422, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37750730

ABSTRACT

Hypervirulent Klebsiella pneumoniae with capsular polysaccharides (CPSs) causes severe nosocomial- and community-acquired infections. Phage-derived depolymerases can degrade CPSs from K. pneumoniae to attenuate bacterial virulence, but their antimicrobial mechanisms and clinical potential are not well understood. In the present study, Klebsiella phage GH-K3-derived depolymerase Depo32 (encoded by gene gp32) was identified to exhibit high efficiency in specifically degrading the CPSs of K2 serotype K. pneumoniae. The cryo-electron microscopy structure of trimeric Depo32 at a resolution up to 2.32 Å revealed potential catalytic centers in the cleft of each of the two adjacent subunits. K. pneumoniae subjected to Depo32 became more sensitive to phagocytosis by RAW264.7 cells and activated the cells by the mitogen-activated protein kinase signaling pathway. In addition, intranasal inoculation with Depo32 (a single dose of 200 µg, 20 µg daily for 3 days, or in combination with gentamicin) rescued all C57BL/6J mice infected with a lethal dose of K. pneumoniae K7 without interference from its neutralizing antibody. In summary, this work elaborates on the mechanism by which Depo32 targets the degradation of K2 serotype CPSs and its potential as an antivirulence agent. IMPORTANCE Depolymerases specific to more than 20 serotypes of Klebsiella spp. have been identified, but most studies only evaluated the single-dose treatment of depolymerases with relatively simple clinical evaluation indices and did not reveal the anti-infection mechanism of these depolymerases in depth. On the basis of determining the biological characteristics, the structure of Depo32 was analyzed by cryo-electron microscopy, and the potential active center was further identified. In addition, the effects of Depo32 on macrophage phagocytosis, signaling pathway activation, and serum killing were revealed, and the efficacy of the depolymerase (single treatment, multiple treatments, or in combination with gentamicin) against acute pneumonia caused by Klebsiella pneumoniae was evaluated. Moreover, the roles of the active sites of Depo32 were also elucidated in the in vitro and in vivo studies. Therefore, through structural biology, cell biology, and in vivo experiments, this study demonstrated the mechanism by which Depo32 targets K2 serotype K. pneumoniae infection.

3.
Front Vet Sci ; 10: 1143257, 2023.
Article in English | MEDLINE | ID: mdl-37035815

ABSTRACT

Introduction: The overall prevalence of Klebsiella spp., a group of important zoonotic pathogens, in the global dairy herds and the risk of cross-species transmission between humans and dairy cows remain to be clarified. This systematic review aimed to determine the prevalence of Klebsiella spp. in milk samples from dairy cows with mastitis worldwide and to assess the factors influencing the prevalence of these strains. Methods: Qualified studies published from 2007 to 2021 were retrieved from ScienceDirect, Web of Science, PubMed, WanFang Database, China National Knowledge Infrastructure (CNKI), and VIP Chinese Journal Database. Calculations of prevalence and their 95% confidence intervals (CIs) were performed for all the studies using the Freeman-Tukey double arcsine transformation (PFT). Results: A total of 79,852 milk samples from 55 manuscripts were examined in this meta-analysis, and 2,478 samples were found to be positive for Klebsiella spp. The pooled prevalence estimates worldwide were 7.95% (95% CI: 6.07%-10.06%), with significant heterogeneity (I 2 = 98.8%, p = 0). The sampling period of 2013-2020 had a higher (p < 0.05) Klebsiella-positive proportion of milk samples (12.16%, 95% CI: 8.08%-16.90%) than that of 2007-2012 (3.85%, 95% CI: 2.67%-5.21%), indicating that bovine mastitis caused by Klebsiella may become increasingly prevalent. The risk factors for the high prevalence of Klebsiella in milk samples mainly included: economic development level (developing countries; 11.76%, 95% CI: 8.25%-15.77%), mastitis type (CM; 11.99%, 95% CI: 8.62%-15.79%), and population density (>500 per sq km; 10.28%, 95% CI: 2.73%-21.58%). Additionally, a bivariate meta-regression analysis revealed that the multidrug-resistance (MDR) rate of the epidemic strains was also closely related to economic development level (R 2 = 78.87%) and population density (R 2 = 87.51%). Discussion: Due to the potential risk of cross-species transmission between humans and cows, the prevalence of mastitis milk-derived Klebsiella and its high MDR rate need to be monitored, especially in developing countries with high population densities.

4.
Front Vet Sci ; 9: 854503, 2022.
Article in English | MEDLINE | ID: mdl-35464385

ABSTRACT

To elucidate the complex physiological process of testis development and spermatogenesis in Sika deer, this study evaluated the changes of miRNA and mRNA profiles in the four developmental stages of testis in the juvenile (1-year-old), adolescence (3-year-old), adult (5-year-old), and aged (10-year-old) stages. The results showed that a total of 198 mature, 66 novel miRNAs, and 23,558 differentially expressed (DE) unigenes were obtained; 14,918 (8,413 up and 6,505 down), 4,988 (2,453 up and 2,535 down), and 5,681 (2,929 up and 2,752 down) DE unigenes, as well as 88 (43 up and 45 down), 102 (44 up and 58 down), and 54 (18 up and 36 down) DE miRNAs were identified in 3- vs. 1-, 5- vs. 3-, and 10- vs. 5-year-old testes, respectively. By integrating miRNA and mRNA expression profiles, we predicted 10,790 mRNA-mRNA and 69,883 miRNA-mRNA interaction sites. The target genes were enriched by GO and KEGG pathways to obtain DE mRNA (IGF1R, ALKBH5, Piwil, HIF1A, BRDT, etc.) and DE miRNA (miR-140, miR-145, miR-7, miR-26a, etc.), which play an important role in testis development and spermatogenesis. The data show that DE miRNAs could regulate testis developmental and spermatogenesis through signaling pathways, including the MAPK signaling pathway, p53 signaling pathway, PI3K-Akt signaling pathway, Hippo signaling pathway, etc. miR-140 was confirmed to directly target mutant IGF1R-3'UTR by the Luciferase reporter assays. This study provides a useful resource for future studies on the role of miRNA regulation in testis development and spermatogenesis.

5.
Microb Pathog ; 167: 105556, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35489635

ABSTRACT

Outer membrane proteins (OMPs) play an important role in bacterial fitness costs. Derived from the interaction between Klebsiella pneumoniae K7 and phage GH-K3, K7RB is an outer membrane porin-deficient phage-resistant mutant strain triggered by ompC712 deletion, exhibits expression inhibition of OmpC, OmpN, KPN_02430 and OmpF, but its fitness costs and regulatory mechanism remains unknown. In this study, compared with K7, K7RB showed almost unaffected growth rate, slightly decreased virulence, and increased resistance to some antibiotics. Transcriptome analysis showed that the pathways of glycerolipid metabolism and nitrogen metabolism in K7RB were significantly inhibited, while the transcription of permeases belonging to ABC transporters tended to be active, nutrient uptakes such as citrate and phenylalanine were also enhanced. However, transcriptional up-regulation in K7RB was inhibited by overexpression of OmpC, OmpN, KPN_02430 and OmpF in general. Overexpression of OmpN, KPN_02430 and OmpF, respectively, restoring the sensitivity of strains to antibiotics to varying degrees, while OmpC overexpression aggravated the bacterial drug-resistance especially to ß-lactam antibiotics. Besides, unlike OmpC and OmpF, overexpression of OmpN and KPN_02430 reduced bacterial virulence. In brief, by revealing the limited fitness costs of phage-resistant mutant K. pneumoniae with porin-deficiency, our study providing a reference for the design and development of drugs to inhibit the ways of bacterial metabolic rewiring and to increase fitness costs.


Subject(s)
Bacteriophages , Klebsiella pneumoniae , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Mutation , Porins/genetics , Porins/metabolism
6.
Microb Pathog ; 162: 105374, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34968644

ABSTRACT

Aeromonas hydrophila (A. hydrophila) is an opportunistic pathogen of fish-human-livestock, which poses a threat to the development of aquaculture. Lytic phage has long been considered as an effective bactericidal agent. However, the rapid development of phage resistance seriously hinders the continuous application of lytic phages. In our study, a new bacteriophage vB_ AhaP_PZL-Ah8 was isolated from sewage and its characteristics and genome were investigated. Phage vB_ AhaP_PZL-Ah8 has been classified as the member of the Podoviridae family, which exhibited the latent period was about 30 min. As revealed from the genomic sequence analysis, vB_ AhaP_PZL-Ah8 covered a double-stranded genome of 40,855 bp (exhibiting 51.89% G + C content), with encoding 52 predicted open reading frames (ORFs). The results suggested that the combination of vB_ AhaP_PZL-Ah8 and another A. hydrophila phage vB_ AhaP_PZL-Ah1 could improve the therapeutic efficacy both in vitro and in vivo. The resistance mutation frequency of A. hydrophila cells infected with the mixture phage (vB_ AhaP_PZL-Ah8+ vB_ AhaP_PZL-Ah1) was significantly lower than cells treated with single phage (P <0.01). Phage therapy in vivo showed that the survival rate in the mixture phage treatment group was significantly higher than that in single phage treatment group.


Subject(s)
Bacteriophages , Aeromonas hydrophila , Animals , Aquaculture , Bacteriophages/genetics , Genome, Viral , Humans , Open Reading Frames
7.
Front Microbiol ; 12: 674068, 2021.
Article in English | MEDLINE | ID: mdl-33968007

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) is an important nosocomial and community acquired opportunistic pathogen which causes various infections. The emergence of multi-drug resistant (MDR) K. pneumoniae and carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) has brought more severe challenge to the treatment of K. pneumoniae infection. In this study, a novel bacteriophage that specifically infects K. pneumoniae was isolated and named as vB_KpnM_P-KP2 (abbreviated as P-KP2). The biological characteristics of P-KP2 and the bioinformatics of its genome were analyzed, and then the therapeutic effect of P-KP2 was tested by animal experiments. P-KP2 presents high lysis efficiency in vitro. The genome of P-KP2 shows homology with nine phages which belong to "KP15 virus" family and its genome comprises 172,138 bp and 264 ORFs. Besides, P-KP2 was comparable to gentamicin in the treatment of lethal pneumonia caused by K. pneumoniae W-KP2 (K47 serotype). Furthermore, the combined treatment of P-KP2 and gentamicin completely rescued the infected mice. Therefore, this study not only introduces a new member to the phage therapeutic library, but also serves as a reference for other phage-antibiotic combinations to combat MDR pathogens.

8.
Front Microbiol ; 11: 585261, 2020.
Article in English | MEDLINE | ID: mdl-33329451

ABSTRACT

Citrobacter freundii refers to a fish pathogen extensively reported to be able to cause injury and high mortality. Phage therapy is considered a process to alternatively control bacterial infections and contaminations. In the present study, the isolation of a virulent bacteriophage IME-JL8 isolated from sewage was presented, and such bacteriophage was characterized to be able to infect Citrobacter freundii specifically. Phage IME-JL8 has been classified as the member of the Siphoviridae family, which exhibits the latent period of 30-40 min. The pH and thermal stability of phage IME-JL8 demonstrated that this bacteriophage achieved a pH range of 4-10 as well as a temperature range of 4, 25, and 37°C. As revealed from the results of whole genomic sequence analysis, IME-JL8 covers a double-stranded genome of 49,838 bp (exhibiting 47.96% G+C content), with 80 putative coding sequences contained. No bacterial virulence- or lysogenesis-related ORF was identified in the IME-JL8 genome, so it could be applicable to phage therapy. As indicated by the in vitro experiments, phage IME-JL8 is capable of effectively removing bacteria (the colony count decreased by 6.8 log units at 20 min), and biofilm can be formed in 24 h. According to the in vivo experiments, administrating IME-JL8 (1 × 107 PFU) was demonstrated to effectively protect the fish exhibiting a double median lethal dose (2 × 109 CFU/carp). Moreover, the phage treatment led to the decline of pro-inflammatory cytokines in carp with lethal infections. IME-JL8 was reported to induce efficient lysis of Citrobacter freundii both in vitro and in vivo, thereby demonstrating its potential as an alternative treatment strategy for infections attributed to Citrobacter freundii.

9.
Front Microbiol ; 11: 351, 2020.
Article in English | MEDLINE | ID: mdl-32210942

ABSTRACT

Yersinia enterocolitica is generally considered an important food-borne pathogen worldwide, especially in the European Union. A lytic Yersinia phage X1 (Viruses; dsDNA viruses, no RNA stage; Caudovirales; and Myoviridae) was isolated. Phage X1 showed a broad host range and could effectively lyse 27/51 Y. enterocolitica strains covering various serotypes that cause yersiniosis in humans and animals (such as serotype O3 and serotype O8). The genome of this phage was sequenced and analyzed. No toxin, antibiotic-resistance or lysogeny related modules were found in the genome of phage X1. Studies of phage stability confirmed that X1 had a high tolerance toward a broad range of temperatures (4-60°C) and pH values (4-11) for 1 h. The ability to resist harsh acidic conditions and enzymatic degradation in vitro demonstrated that phage X1 is suitable for oral administration, and in particular, that this phage can pass the stomach barrier and efficiently reach the intestine in vivo without losing infectious ability. The potential of this phage against Y. enterocolitica infection in vitro was studied. In animal experiments, a single oral administration of phage X1 at 6 h post infection was sufficient to eliminate Y. enterocolitica in 33.3% of mice (15/45). In addition, the number of Y. enterocolitica strains in the mice was also dramatically reduced to approximately 103 CFU/g after 18 h compared with 107 CFU/g in the mice without phage treatment. Treatment with phage X1 showed significant improvement by intestinal histopathologic observations. Moreover, proinflammatory cytokine levels (IL-6, TNF-α, and IL-1ß) were significantly reduced (P < 0.05). These results indicate that phage X1 is a promising candidate to control infection by Y. enterocolitica in vivo.

10.
Front Microbiol ; 10: 1189, 2019.
Article in English | MEDLINE | ID: mdl-31191500

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) spp. are important nosocomial and community-acquired opportunistic pathogens, which cause various infections. We observed that K. pneumoniae strain K7 abruptly mutates to rough-type phage-resistant phenotype upon treatment with phage GH-K3. In the present study, the rough-type phage-resistant mutant named K7RR showed much lower virulence than K7. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis indicated that WcaJ and two undefined glycosyltransferases (GTs)- named GT-1, GT-2- were found to be down-regulated drastically in K7RR as compared to K7 strain. GT-1, GT-2, and wcaJ are all located in the gene cluster of capsular polysaccharide (CPS). Upon deletion, even of single component, of GT-1, GT-2, and wcaJ resulted clearly in significant decline of CPS synthesis with concomitant development of GH-K3 resistance and decline of virulence of K. pneumoniae, indicating that all these three GTs are more likely involved in maintenance of phage sensitivity and bacterial virulence. Additionally, K7RR and GT-deficient strains were found sensitive to endocytosis of macrophages. Mitogen-activated protein kinase (MAPK) signaling pathway of macrophages was significantly activated by K7RR and GT-deficient strains comparing with that of K7. Interestingly, in the presence of macromolecular CPS residues (>250 KD), K7(ΔGT-1) and K7(ΔwcaJ) could still be bounded by GH-K3, though with a modest adsorption efficiency, and showed minor virulence, suggesting that the CPS residues accumulated upon deletion of GT-1 or wcaJ did retain phage binding sites as well maintain mild virulence. In brief, our study defines, for the first time, the potential roles of GT-1, GT-2, and WcaJ in K. pneumoniae in bacterial virulence and generation of rough-type mutation under the pressure of bacteriophage.

11.
Virus Genes ; 55(5): 696-706, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31254238

ABSTRACT

Bacteriophages have been recently revisited as an alternative biocontrol tool due to the limitations of antibiotic treatment. In this study, we reported on the biological characteristics and genomic information of vB_KpnS_GH-K3 (abbreviated as GH-K3), a Klebsiella phage of the Siphoviridae family, which was previously isolated from a hospital sewage system. One-step growth curve analysis indicated that the burst size of GH-K3 was 291 PFU/cell. GH-K3 maintained a stable titer in a broad range of pH values (6-10) and temperature (up to 50 °C). Based on bioinformatics analysis, GH-K3 comprises of 49,427 bp containing a total of 77 open reading frames (ORFs), which share high degree of nucleotide similarity and close evolutionary relationships with at least 12 other Klebsiella phages. Of note, GH-K3 gp32 was identified as a unique ORF. The major segment of gp32 sequence at the C-terminus (residues 351-907) was found highly variable as determined by its mismatch with the nucleotide and protein sequences available at NCBI database. Furthermore, HHpred analysis indicated that GH-K3 gp32 contains three domains (PDB ID: 5W6S_A, 3GQ8_A and 1BHE_A) similar to depolymerase (depoKP36) of Klebsiella phage KP36 suggestive of a potential depolymerase activity during host receptor-binding in the processes of phage infection. Altogether, the current data revealed a novel putative depolymerase-like protein which is most likely to play an important role in phage-host interaction.


Subject(s)
Bacteriophages/growth & development , Klebsiella/virology , Bacteriophages/drug effects , Bacteriophages/genetics , Bacteriophages/radiation effects , Genome, Viral , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Microbial Viability/radiation effects , Open Reading Frames , Sequence Homology , Synteny , Temperature , Viral Load , Viral Proteins/genetics
12.
Viruses ; 11(2)2019 01 26.
Article in English | MEDLINE | ID: mdl-30691182

ABSTRACT

Aerococcus viridans is an opportunistic pathogen that is clinically associated with various human and animal diseases. In this study, the first identified A. viridans phage, vB_AviM_AVP (abbreviated as AVP), was isolated and studied. AVP belongs to the family Myoviridae. AVP harbors a double-stranded DNA genome with a length of 133,806 bp and a G + C content of 34.51%. The genome sequence of AVP showed low similarity (<1% identity) to those of other phages, bacteria, or other organisms in the database. Among 165 predicted open reading frames (ORFs), there were only 69 gene products exhibiting similarity (≤65% identity) to proteins of known functions in the database. In addition, the other 36 gene products did not match any viral or prokaryotic sequences in any publicly available database. On the basis of the putative functions of the ORFs, the genome of AVP was divided into three modules: nucleotide metabolism and replication, structural components, and lysis. A phylogenetic analysis of the terminase large subunits and capsid proteins indicated that AVP represents a novel branch of phages. The observed characteristics of AVP indicate that it represents a new class of phages.


Subject(s)
Aerococcus/virology , Genome, Viral , Myoviridae/genetics , Base Composition , Capsid Proteins/genetics , DNA, Viral/genetics , Myoviridae/isolation & purification , Open Reading Frames , Phylogeny , Sequence Analysis, DNA
13.
Vet Microbiol ; 229: 72-80, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30642601

ABSTRACT

Staphylococcus aureus is one of the most important pathogens causing rabbit necrotizing pneumonia and brings huge economic losses to rabbit production. This study investigated the preventive effect of a phage on rabbit necrotizing pneumonia caused by S. aureus. S. aureus S6 was isolated from the lungs of rabbits suffering necrotizing pneumonia and identified. A novel phage named VB-SavM-JYL01 was isolated by using S. aureus S6 as a host and showed a broader host range than the phages GH15 and K. The genome of VB-SavM-JYL01 lacked bacterial virulence-, antibiotic resistance- and lysogenesis-related genes. A single intranasal administration of VB-SavM-JYL01 (3 × 109 PFU) could effectively improve the survival rate at 48 h to 90% (9/10) compared with the survival rate of 10% and 80% observed with the PBS or linezolid treatment, respectively. The bacterial count in the lungs of rabbits treated with the phage VB-SavM-JYL01 was 4.18 × 104 CFU/g at 24 h, which was significantly decreased compared to that of rabbits treated with PBS (7.38 × 107 CFU/g) or linezolid (3.12 × 105 CFU/g). The phage treatment significantly alleviated lung tissue damage. The levels of total proteins, Panton-Valentine leukocidin (PVL), alpha-toxin (Hla) and cytokines in the lungs of the rabbits treated with the phage were significantly lower than those of the rabbits treated with PBS and similar to those of the rabbits treated with linezolid. These data demonstrate the potential utility of phage as an alternative for preventing rabbit necrotizing pneumonia caused by S. aureus.


Subject(s)
Pneumonia, Necrotizing/veterinary , Pneumonia, Staphylococcal/veterinary , Rabbits/microbiology , Staphylococcus Phages , Staphylococcus aureus/virology , Animals , Female , Pneumonia, Necrotizing/microbiology , Pneumonia, Necrotizing/prevention & control , Pneumonia, Staphylococcal/prevention & control
14.
Appl Environ Microbiol ; 84(21)2018 11 01.
Article in English | MEDLINE | ID: mdl-30171001

ABSTRACT

Bacteriophage can be used as an alternative or complementary therapy to antibiotics for treating multidrug-resistant bacterial infections. However, the rapid emergence of resistant host variants during phage treatment has limited its therapeutic applications. In this study, a potential phage-resistant mechanism of Klebsiella pneumoniae was revealed. After phage GH-K3 treatment, a smooth-type colony, named K7RB, was obtained from the K. pneumoniae K7 culture. Treatment with IO4- and/or proteinase K indicated that polysaccharides of K7 played an important role in phage recruitment, and protein receptors on K7 were essential for effective infection by GH-K3. Differences in protein expression between K7 and K7RB were quantitatively analyzed by liquid chromatography-tandem mass spectrometry. Among differentially expressed proteins, OmpC, OmpN, KPN_02430, and OmpF were downregulated significantly in K7RBtrans-Complementation of OmpC in K7RB conferred rapid adsorption and sensitivity to GH-K3. In contrast, a single-base deletion mutation of ompC in K7, which resulted in OmpC silencing, led to lower adsorption efficiency and resistance to GH-K3. These assays proved that OmpC is the key receptor-binding protein for GH-K3. In addition, the native K. pneumoniae strains KPP14, KPP27, and KPP36 showed low or no sensitivity to GH-K3. However, these strains became more sensitive to GH-K3 after their native receptors were replaced by OmpC of K7, suggesting that OmpCK7 was the most suitable receptor for GH-K3. This study revealed that K7RB became resistant to GH-K3 due to gene mutation of ompC and that OmpC of K7 is essential for effective infection by GH-K3.IMPORTANCE With increased incidence of multidrug-resistant (MDR) bacterial strains, phages have regained attention as promising potential antibacterial agents. However, the rapid emergence of resistant variants during phage treatment has limited the therapeutic applications of phage. According to our trans-complementation, ompC mutation, and phage adsorption efficiency assays, we identified OmpC as the key receptor-binding protein (RBP) for phage GH-K3, which is essential for effective infection. This study revealed that the phage secondary receptor of K. pneumoniae, OmpC, is the essential RBP not only for phage infecting Gram-negative bacteria, such as Escherichia coli and Salmonella, but also for K. pneumoniae.


Subject(s)
Bacteriophages/physiology , Klebsiella pneumoniae/virology , Porins/metabolism , Receptors, Virus/metabolism , Amino Acid Sequence , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Mutation , Porins/genetics , Receptors, Virus/genetics , Virus Attachment
15.
Viruses ; 10(5)2018 05 06.
Article in English | MEDLINE | ID: mdl-29734776

ABSTRACT

Staphylococcus aureus (S. aureus) is a common and dangerous pathogen that causes various infectious diseases. Skin damage, such as burn wounds, are at high risk of Staphylococcus aureus colonization and infection, which increases morbidity and mortality. The phage lysin LysGH15 exhibits highly efficient lytic activity against methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains. Apigenin (api) significantly decreases haemolysis of rabbit erythrocytes caused by S. aureus and shows anti-inflammatory function. LysGH15 and api were added to Aquaphor to form an LysGH15-api-Aquaphor (LAA) ointment. The LAA ointment simultaneously exhibited bactericidal activity against S. aureus and inhibited haemolysis. In an LAA-treated mouse model of an MRSA-infected skin wound, the mean bacterial colony count decreased to approximately 10² CFU/mg at 18 h after treatment (and the bacteria became undetectable at 96 h), whereas the mean count in untreated mice was approximately 105 CFU/mg of tissue. The LAA ointment also reduced the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IFN-γ) and accelerated wound healing in the mouse model. These data demonstrate the potential efficacy of a combination of LysGH15 and api for use as a topical antimicrobial agent against S. aureus.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Apigenin/therapeutic use , Mucoproteins/therapeutic use , Ointments/pharmacology , Staphylococcal Infections/drug therapy , Wounds and Injuries/drug therapy , Animals , Colony Count, Microbial , Cytokines/drug effects , Female , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Skin/microbiology , Skin/pathology , Staphylococcus Phages/chemistry , Wounds and Injuries/microbiology
16.
Appl Environ Microbiol ; 84(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29776929

ABSTRACT

Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we observed the ability of the phage lysin LysGH15 to eliminate staphylococcal planktonic cells and biofilms formed by Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis All these strains were sensitive to LysGH15, showing reductions in bacterial counts of approximately 4 log units within 30 min after treatment with 20 µg/ml of LysGH15, and the MICs ranged from 8 µg/ml to 32 µg/ml. LysGH15 efficiently prevented biofilm formation by the four staphylococcal species at a dose of 50 µg/ml. At a higher dose (100 µg/ml), LysGH15 also showed notable disrupting activity against 24-h and 72-h biofilms formed by S. aureus and coagulase-negative species. In the in vivo experiments, a single intraperitoneal injection of LysGH15 (20 µg/mouse) administered 1 h after the injection of S. epidermidis at double the minimum lethal dose was sufficient to protect the mice. The S. epidermidis cell counts were 4 log units lower in the blood and 3 log units lower in the organs of mice 24 h after treatment with LysGH15 than in the untreated control mice. LysGH15 reduced cytokine levels in the blood and improved pathological changes in the organs. The broad antistaphylococcal activity exerted by LysGH15 on planktonic cells and biofilms makes LysGH15 a valuable treatment option for biofilm-related or non-biofilm-related staphylococcal infections.IMPORTANCE Most staphylococcal species are major causes of health care- and community-associated infections. In particular, Staphylococcus aureus is a common and dangerous pathogen, and Staphylococcus epidermidis is a ubiquitous skin commensal and opportunistic pathogen. Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we found that all tested S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis strains were sensitive to the phage lysin LysGH15 (MICs ranging from 8 to 32 µg/ml). More importantly, LysGH15 not only prevented biofilm formation by these staphylococci but also disrupted 24-h and 72-h biofilms. Furthermore, the in vivo efficacy of LysGH15 was demonstrated in a mouse model of S. epidermidis bacteremia. Thus, LysGH15 exhibits therapeutic potential for treating biofilm-related or non-biofilm-related infections caused by diverse staphylococci.


Subject(s)
Biofilms , Phage Therapy , Plankton/physiology , Plankton/virology , Staphylococcal Infections/therapy , Staphylococcus Phages/physiology , Staphylococcus/physiology , Staphylococcus/virology , Animals , Bacteremia/microbiology , Bacteremia/therapy , Female , Humans , Mice , Mice, Inbred BALB C , Plankton/genetics , Plankton/growth & development , Staphylococcal Infections/microbiology , Staphylococcus/genetics , Staphylococcus/growth & development
17.
Sci Rep ; 7(1): 10164, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860505

ABSTRACT

Phage-derived lysins can hydrolyse bacterial cell walls and show great potential for combating Gram-positive pathogens. In this study, the potential of LysEF-P10, a new lysin derived from a isolated Enterococcus faecalis phage EF-P10, as an alternative treatment for multidrug-resistant E. faecalis infections, was studied. LysEF-P10 shares only 61% amino acid identity with its closest homologues. Four proteins were expressed: LysEF-P10, the cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain (LysEF-P10C), the putative binding domain (LysEF-P10B), and a fusion recombination protein (LysEF-P10B-green fluorescent protein). Only LysEF-P10 showed highly efficient, broad-spectrum bactericidal activity against E. faecalis. Several key functional residues, including the Cys-His-Asn triplet and the calcium-binding site, were confirmed using 3D structure prediction, BLAST and mutation analys. We also found that calcium can switch LysEF-P10 between its active and inactive states and that LysEF-P10B is responsible for binding E. faecalis cells. A single administration of LysEF-P10 (5 µg) was sufficient to protect mice against lethal vancomycin-resistant Enterococcus faecalis (VREF) infection, and LysEF-P10-specific antibody did not affect its bactericidal activity or treatment effect. Moreover, LysEF-P10 reduced the number of Enterococcus colonies and alleviated the gut microbiota imbalance caused by VREF. These results indicate that LysEF-P10 might be an alternative treatment for multidrug-resistant E. faecalis infections.


Subject(s)
Bacteriophages/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Enterococcus faecalis/virology , Gram-Positive Bacterial Infections/prevention & control , N-Glycosyl Hydrolases/administration & dosage , N-Glycosyl Hydrolases/chemistry , Animals , Bacteriophages/enzymology , Bacteriophages/isolation & purification , Binding Sites , Disease Models, Animal , Enterococcus faecalis/drug effects , Female , Humans , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Models, Molecular , Mutation , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/pharmacology , Protein Conformation , Sequence Homology, Amino Acid , Viral Proteins/administration & dosage , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/pharmacology
18.
Front Microbiol ; 8: 837, 2017.
Article in English | MEDLINE | ID: mdl-28536572

ABSTRACT

Enterococcus faecalis is becoming an increasingly important opportunistic pathogen worldwide, especially because it can cause life-threatening nosocomial infections. Treating E. faecalis infections has become increasingly difficult because of the prevalence of multidrug-resistant E. faecalis strains. Because bacteriophages show specificity for their bacterial hosts, there has been a growth in interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. In this study, we isolated a new lytic phage, EF-P29, which showed high efficiency and a broad host range against E. faecalis strains, including vancomycin-resistant strains. The EF-P29 genome contains 58,984 bp (39.97% G+C), including 101 open reading frames, and lacks known putative virulence factors, integration-related proteins or antibiotic resistance determinants. In murine experiments, the administration of a single intraperitoneal injection of EF-P29 (4 × 105 PFU) at 1 h after challenge was sufficient to protect all mice against bacteremia caused by infection with a vancomycin-resistant E. faecalis strain (2 × 109 CFU/mouse). E. faecalis colony counts were more quickly eliminated in the blood of EF-P29-protected mice than in unprotected mice. We also found that exogenous E. faecalis challenge resulted in enrichment of members of the genus Enterococcus (family Enterococcaceae) in the guts of the mice, suggesting that it can enter the gut and colonize there. The phage EF-P29 reduced the number of colonies of genus Enterococcus and alleviated the gut microbiota imbalance that was caused by E. faecalis challenge. These data indicate that the phage EF-P29 shows great potential as a therapeutic treatment for systemic VREF infection. Thus, phage therapies that are aimed at treating opportunistic pathogens are also feasible. The dose of phage should be controlled and used at the appropriate level to avoid causing imbalance in the gut microbiota.

19.
Sci Rep ; 6: 29344, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27385518

ABSTRACT

The lysin LysGH15, derived from the staphylococcal phage GH15, exhibits a wide lytic spectrum and highly efficient lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we found that LysGH15 did not induce resistance in MRSA or methicillin-sensitive S. aureus (MSSA) strains after repeated treatment. Although LysGH15 triggered the generation of LysGH15-specific antibodies in mice, these antibodies did not block lytic activity in vitro (nor the binding capacity of LysGH15). More importantly, when the antibody titre was highest in mice immunized with LysGH15, a single intravenous injection of LysGH15 was sufficient to protect mice against lethal infection with MRSA. These results indicated that LysGH15-specific antibodies did not affect the killing efficiency of LysGH15 against MRSA in vitro or in vivo. LysGH15 also reduced pro-inflammatory cytokines in mice with lethal infections. Furthermore, a high-dose LysGH15 injection did not cause significant adverse effects or pathological changes in the main organs of treated animals. These results provide further evidence for the administration of LysGH15 as an alternative strategy for the treatment of infections caused by MRSA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Immunity, Humoral/drug effects , Inflammation/chemically induced , Methicillin-Resistant Staphylococcus aureus/drug effects , Mucoproteins/pharmacology , Animals , Female , Mice , Mice, Inbred BALB C , Staphylococcal Infections/drug therapy , Staphylococcus Phages/drug effects
20.
J Microbiol Biotechnol ; 26(2): 421-31, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26608167

ABSTRACT

Recently, poly-γ-glutamic acid synthetase A (pgsA) has been applied to display exogenous proteins on the surface of Lactobacillus casei or Lactococcus lactis, which results in a surfacedisplayed component of bacteria. However, the ability of carrying genes encoded by plasmids and the expression efficiency of recombinant bacteria can be somewhat affected by the longer gene length of pgsA (1,143 bp); therefore, a truncated gene, pgsA, was generated based on the characteristics of pgsA by computational analysis. Using murine IL-10 as an exogenous gene, recombinant Lactobacillus plantarum was constructed and the capacity of the surface-displayed protein and functional differences between exogenous proteins expressed by these strains were evaluated. Surface expression of IL-10 on both recombinant bacteria with anchorins and the higher expression levels in L. plantarum-pgsA'-IL-10 were confirmed by western blot assay. Most importantly, up-regulation of IL-1ß, IL-6, TNF-α, IFN-γ, and the nuclear transcription factor NF-κB p65 in RAW264.7 cells after stimulation with Poly(I:C) or LPS was exacerbated after co-culture with L. plantarum-pgsA. By contrast, IL-10 expressed by these recombinant strains could reduce these factors, and the expression of these factors was associated with recombinant strains that expressed anchorin (especially in L. plantarum-pgsA'-IL-10) and was significantly lower compared with the anchorin-free strains. These findings indicated that exogenous proteins could be successfully displayed on the surface of L. plantarum by pgsA or pgsA', and the expression of recombinant bacteria with pgsA' was superior compared with bacteria with pgsA.


Subject(s)
Bacterial Proteins/genetics , Interleukin-10/genetics , Lactobacillus plantarum/genetics , Membrane Proteins/genetics , Animals , Blotting, Western , Coculture Techniques , Interleukin-6/metabolism , Lacticaseibacillus casei/genetics , Lactobacillus plantarum/drug effects , Lipopolysaccharides/immunology , Mice , NF-kappa B/genetics , Poly I-C/immunology , RAW 264.7 Cells , Recombinant Proteins/immunology , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...