Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Publication year range
1.
Viruses ; 15(4)2023 03 24.
Article in English | MEDLINE | ID: mdl-37112811

ABSTRACT

A worldwide ecological issue, cyanobacterial blooms in marine and freshwater have caused enormous losses in both the economy and the environment. Virulent cyanophages-specifically, infecting and lysing cyanobacteria-are key ecological factors involved in limiting the overall extent of the population development of cyanobacteria. Over the past three decades, reports have mainly focused on marine Prochlorococcus and Synechococcus cyanophages, while information on freshwater cyanophages remained largely unknown. In this study, a novel freshwater cyanophage, named Lbo240-yong1, was isolated via the double-layer agar plate method using Leptolyngbya boryana FACHB-240 as a host. Transmission electron microscopy observation illustrated the icosahedral head (50 ± 5 nm in diameter) and short tail (20 ± 5 nm in length) of Lbo240-yong1. Experimental infection against 37 cyanobacterial strains revealed that host-strain-specific Lbo240-yong1 could only lyse FACHB-240. The complete genome of Lbo240-yong1 is a double-stranded DNA of 39,740 bp with a G+C content of 51.99%, and it harbors 44 predicted open reading frames (ORFs). A Lbo240-yong1 ORF shared the highest identity with a gene of a filamentous cyanobacterium, hinting at a gene exchange between the cyanophage and cyanobacteria. A BLASTn search illustrated that Lbo240-yong1 had the highest sequence similarity with the Phormidium cyanophage Pf-WMP4 (89.67% identity, 84% query coverage). In the proteomic tree based on genome-wide sequence similarities, Lbo240-yong1, three Phormidium cyanophages (Pf-WMP4, Pf-WMP3, and PP), one Anabaena phage (A-4L), and one unclassified Arthronema cyanophage (Aa-TR020) formed a monophyletic group that was more deeply diverging than several other families. Pf-WMP4 is the only member of the independent genus Wumpquatrovirus that belongs to the Caudovircetes class. Pf-WMP3 and PP formed the independent genus Wumptrevirus. Anabaena phage A-4L is the only member of the independent Kozyakovvirus genus. The six cyanopodoviruses share similar gene arrangements. Eight core genes were found in them. We propose, here, to set up a new taxonomic family comprising the six freshwater cyanopodoviruses infecting filamentous cyanobacteria. This study enriched the field's knowledge of freshwater cyanophages.


Subject(s)
Bacteriophages , Proteomics , Genome, Viral , Genomics , Fresh Water , Phylogeny
2.
Viruses ; 14(11)2022 11 11.
Article in English | MEDLINE | ID: mdl-36423108

ABSTRACT

Aeromonas hydrophila is a zoonotic pathogen and an important fish pathogen. A new lytic phage, Ahy-yong1, against multi-antibiotic-resistant pathogen A. hydrophila was isolated, identified, and tentatively used in therapy. Ahy-yong1 possesses a head of approximately 66 nm in diameter and a short tail of approximately 26 nm in length and 32 nm in width. Its complete dsDNA genome is 43,374 bp with a G + C content of 59.4%, containing 52 predicted opening reading frames (ORFs). Taxonomic analysis indicated Ahy-yong1 as a new species of the Ahphunavirus genus of the Autographiviridae family of the Caudoviricetes class. Ahy-yong1 was active only against its indicator host strain among the 35 strains tested. It is stable at 30-40 °C and at pH 2-12. Aeromonas phage Ahy-yong1 revealed an effective biofilm removal capacity and an obvious protective effect in brocade carp (Cyprinus aka Koi). The average cumulative mortality for the brocade carp in the blank groups intraperitoneally injected with PBS was 1.7% ± 2.4%;for the control groups treated with A. hydrophila (108 CFU/fish) via intraperitoneal injection, it was 100.00%;and for the test group I, successively treated with A. hydrophila (108 CFU/fish) and Aeromonas phage Ahy-yong1 (107 PFU/fish) via intraperitoneal injection witha time interval of 2 hours, it was only 43.4% ± 4.7%. Furthermore, the cumulative mortality of the test group II, successively treated with Aeromonas phage Ahy-yong1 (107 PFU/fish) and A. hydrophila (108 CFU/fish), was only 20.0% ± 8.2%, and that of the test group III, simultaneously treated with Aeromonas phage Ahy-yong1 (107 PFU/fish) and A. hydrophila (108 CFU/fish), was only 30.0% ± 8.2%. The results demonstrated that phage Ahy-yong1 was very effective in the therapies against A. hydrophila A18, prophylaxis was more effective than rescue, and earlier treatment was better for the reduction of mortality. This study enriches knowledge about Aeromonas phages.


Subject(s)
Aeromonas , Bacteriophages , Carps , Caudovirales , Animals , Aeromonas hydrophila
3.
Viruses ; 14(9)2022 09 16.
Article in English | MEDLINE | ID: mdl-36146857

ABSTRACT

Microcystis aeruginosa is a major harmful cyanobacterium causing water bloom worldwide. Cyanophage has been proposed as a promising tool for cyanobacterial bloom. In this study, M. aeruginosa FACHB-1326 was used as an indicator host to isolate cyanophage from Lake Taihu. The isolated Microcystis cyanophage Mae-Yong1326-1 has an elliptical head of about 47 nm in diameter and a slender flexible tail of about 340 nm in length. Mae-Yong1326-1 could lyse cyanobacterial strains across three orders (Chroococcales, Nostocales, and Oscillatoriales) in the host range experiments. Mae-Yong1326-1 was stable in stability tests, maintaining high titers at 0-40 °C and at a wide pH range of 3-12. Mae-Yong 1326-1 has a burst size of 329 PFU/cell, which is much larger than the reported Microcystis cyanophages so far. The complete genome of Mae-Yong1326-1 is a double-stranded DNA of 48, 822 bp, with a G + C content of 71.80% and long direct terminal repeats (DTR) of 366 bp, containing 57 predicted ORFs. No Mae-Yong1326-1 ORF was found to be associated with virulence factor or antibiotic resistance. PASC scanning illustrated that the highest nucleotide sequence similarity between Mae-Yong1326-1 and all known phages in databases was only 17.75%, less than 70% (the threshold to define a genus), which indicates that Mae-Yong1326-1 belongs to an unknown new genus. In the proteomic tree based on genome-wide sequence similarities, Mae-Yong1326-1 distantly clusters with three unclassified Microcystis cyanophages (MinS1, Mwe-Yong1112-1, and Mwes-Yong2). These four Microcystis cyanophages form a monophyletic clade, which separates at a node from the other clade formed by two independent families (Zierdtviridae and Orlajensenviridae) of Caudoviricetes class. We propose to establish a new family to harbor the Microcystis cyanophages Mae-Yong1326-1, MinS1, Mwe-Yong1112-1, and Mwes-Yong2. This study enriched the understanding of freshwater cyanophages.


Subject(s)
Cyanobacteria , Microcystis , DNA , Humans , Lakes , Proteomics , Virulence Factors , Water
4.
J Pharm Anal ; 12(4): 530-540, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36105171

ABSTRACT

Fluorescence imaging is a noninvasive and dynamic real-time imaging technique; however, it exhibits poor spatial resolution in centimeter-deep tissues because biological tissues are highly scattering media for optical radiation. The recently developed ultrasound-controlled fluorescence (UCF) imaging is a novel imaging technique that can overcome this bottleneck. Previous studies suggest that the effective contrast agent and sensitive imaging system are the two pivotal factors for generating high-resolution UCF images ex vivo and/or in vivo. Here, this review highlights the recent advances (2015-2020) in the design and synthesis of contrast agents and the improvement of imaging systems to realize high-resolution UCF imaging of deep tissues. The imaging performances of various UCF systems, including the signal-to-noise ratio, imaging resolution, and imaging depth, are specifically discussed. In addition, the challenges and prospects are highlighted. With continuously increasing research interest in this field and emerging multidisciplinary applications, UCF imaging with higher spatial resolution and larger imaging depth may be developed shortly, which is expected to have a far-reaching impact on disease surveillance and/or therapy.

5.
Arch Virol ; 167(11): 2371-2376, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35857150

ABSTRACT

The freshwater cyanophage Mwe-Yong1112-1 was isolated using Microcystis wesenbergii as a host and found to have an icosahedral head, about 45 nm in diameter, and a flexible tail, approximately 133 nm in length and 4.5 nm in width. The complete genome of the cyanophage is 39,679 bp in length with a G+C content of 66.6%. Mwe-Yong1112-1 shared the highest pairwise average nucleotide identity (ANI) value of 67.7% (below the ≥95% boundary to define a species) and the highest nucleotide sequence similarity of 17.48% (below the >70% boundary to define a genus) with the most closely related phage. In a proteomic tree, Mwe-Yong1112-1 and three unclassified phages formed a monophyletic clade between the families Saparoviridae and Pyrstoviridae, but Mwe-Yong1112-1 occupied a separate branch from the other three phages, suggesting that it represents a new evolutionary lineage. This study enriches the available information about freshwater cyanophages.


Subject(s)
Bacteriophages , Microcystis , Bacteriophages/genetics , Fresh Water , Genome, Viral , Humans , Microcystis/genetics , Nucleotides , Phylogeny , Proteomics
6.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: mdl-35215876

ABSTRACT

Cyanobacterial blooms are a worldwide ecological issue. Cyanophages are aquatic viruses specifically infecting cyanobacteria. Little is known about freshwater cyanophages. In this study, a freshwater cyanophage, Mae-Yong924-1, was isolated by the double-layer agar plate method using Microcystis aeruginosa FACHB-924 as an indicator host. Mae-Yong924-1 has several unusual characteristics: a unique shape, cross-taxonomic order infectivity and a very unique genome sequence. Mae-Yong924-1 contains a nearly spherical head of about 100 nm in diameter. The tail or tail-like structure (approximately 40 nm in length) is like the tassel of a round Chinese lantern. It could lyse six diverse cyanobacteria strains across three orders including Chroococcales, Nostocales and Oscillatoriales. The genome of the cyanophage is 40,325 bp in length, with a G + C content of 48.32%, and 59 predicted open reading frames (ORFs), only 12 (20%) of which were functionally annotated. Both BLASTn and BLASTx scanning resulted in "No significant similarity found", i.e., the Mae-Yong924-1 genome shared extremely low homology with sequences in NCBI databases. Mae-Yong924-1 formed a root node alone and monopolized a root branch in the proteomic tree based on genome-wide sequence similarities. The results suggest that Mae-Yong924-1 may reveal a new unknown family apparently distinct from other viruses.


Subject(s)
Bacteriophages/isolation & purification , Cyanobacteria/virology , Fresh Water/virology , Bacteriolysis , Bacteriophages/classification , Bacteriophages/genetics , Bacteriophages/physiology , Genome, Viral , Host Specificity , Microcystis/virology , Open Reading Frames , Phylogeny
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-955466

ABSTRACT

Fluorescence imaging is a noninvasive and dynamic real-time imaging technique;however,it exhibits poor spatial resolution in centimeter-deep tissues because biological tissues are highly scattering media for optical radiation.The recently developed ultrasound-controlled fluorescence(UCF)imaging is a novel imaging technique that can overcome this bottleneck.Previous studies suggest that the effective contrast agent and sensitive imaging system are the two pivotal factors for generating high-resolution UCF images ex vivo and/or in vivo.Here,this review highlights the recent advances(2015-2020)in the design and synthesis of contrast agents and the improvement of imaging systems to realize high-resolution UCF imaging of deep tissues.The imaging performances of various UCF systems,including the signal-to-noise ratio,imaging resolution,and imaging depth,are specifically discussed.In addition,the challenges and prospects are highlighted.With continuously increasing research interest in this field and emerging multidisciplinary applications,UCF imaging with higher spatial resolution and larger imaging depth may be developed shortly,which is expected to have a far-reaching impact on disease surveillance and/or therapy.

8.
Front Microbiol ; 12: 754331, 2021.
Article in English | MEDLINE | ID: mdl-35211099

ABSTRACT

A unique lytic phage infecting Hafnia paralvei was isolated and identified. Hafnia phage Ca belongs to the family Autographiviridae, possessing an icosahedral head with a diameter of 55 nm and a short non-contractile tail. Unusually, the burst size of Hafnia phage Ca of 10,292 ± 1,097 plaque-forming units (PFUs)/cell is much larger than other dsDNA phages reported before. Compared to the genome of the related phage, Hafnia phage Ca genome contains extra genes including DNA mimic ocr, dGTP triphosphohydrolase inhibitor, endonuclease, endonuclease VII, and HNH homing endonuclease gene. Extraordinarily, the phage developed different sizes of plaques when a single plaque was picked out and inoculated on a double-layer Luria broth agar plate with its host. Furthermore, varied packaging tightness for the tails of Hafnia phage Ca was observed (tail length: 4.35-45.92 nm). Most of the tails appeared to be like a cone with appendages, some were dot-like, bun-like, table tennis racket handle-like, and ponytail-like. Although the complete genome of Hafnia phage Ca is 40,286 bp, an incomplete genome with a deletion of a 397-bp fragment, containing one ORF predicted as HNH homing endonuclease gene (HEG), was also found by high throughput sequencing. Most of the genome of the virus particles in large plaques is complete (>98%), while most of the genome of the virus particles in small plaques is incomplete (>98%), and the abundance of both of them in medium-sized plaques is similar (complete, 40%; incomplete, 60%). In an experiment to see if the phage could be protective to brocade carps intramuscularly injected with H. paralvei LY-23 and phage Ca, the protection rate of Hafnia phage Ca to brocade carp (Cyprinus aka Koi) against H. paralvei was 33.38% (0.01 < p < 0.05). This study highlights some new insights into the peculiar biological and genomic characteristics of phage.

SELECTION OF CITATIONS
SEARCH DETAIL