Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 130: 111758, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38422771

ABSTRACT

Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) represents a predominant etiology of non-traumatic osteonecrosis, imposing substantial pain, restricting hip mobility, and diminishing overall quality of life for affected individuals. Centella asiatica (L.) Urb. (CA), an herbal remedy deeply rooted in traditional oriental medicine, has exhibited noteworthy therapeutic efficacy in addressing inflammation and facilitating wound healing. Drawing from CA's historical applications, its anti-inflammatory, anti-apoptotic, and antioxidant attributes may hold promise for managing GIONFH. Asiatic acid (AA), a primary constituent of CA, has been substantiated as a key contributor to its anti-apoptotic, antioxidant, and anti-inflammatory capabilities, showcasing a close association with orthopedic conditions. For the investigation of whether AA could alleviate GIONFH through suppressing oxidative stress, apoptosis, and to delve into its potential cellular and molecular mechanisms, the connection between AA and disease was analyzed through network pharmacology. DEX-induced apoptosis in rat osteoblasts and GIONFH in rat models, got utilized for the verification in vitro/vivo, on underlying mechanism of AA in GIONFH. Network pharmacology analysis reveals a robust correlation between AA and GIONFH in multiple target genes. AA has demonstrated the inhibition of DEX-induced osteoblast apoptosis by modulating apoptotic factors like BAX, BCL-2, Cleaved-caspase3, and cleaved-caspase9. Furthermore, it effectively diminishes the ROS overexpression and regulates oxidative stress through mitochondrial pathway. Mechanistic insights suggest that AA's therapeutic effects involve phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) pathway activation. Additionally, AA has exhibited its potential to ameliorate GIONFH progression in rat models. Our findings revealed that AA mitigated DEX-induced osteoblast apoptosis and oxidative stress through triggering PI3K/AKT pathway. Also, AA can effectively thwart GIONFH occurrence and development in rats.


Subject(s)
Glucocorticoids , Osteonecrosis , Pentacyclic Triterpenes , Rats , Animals , Glucocorticoids/therapeutic use , Glucocorticoids/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Antioxidants/pharmacology , Femur Head , Quality of Life , Anti-Inflammatory Agents/pharmacology , Apoptosis
2.
Phytother Res ; 38(1): 156-173, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37846877

ABSTRACT

Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is the main complication secondary to long-term or excessive use of glucocorticoids (GCs). Taxifolin (TAX) is a natural antioxidant with various pharmacological effects, such as antioxidative stress and antiapoptotic properties. The purpose of this study was to explore whether TAX could regulate oxidative stress and apoptosis in GIONFH by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. We conducted qRT-PCR, Western blotting, TUNEL assays, flow cytometry, and other experiments in vitro. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were performed to determine the therapeutic effect of TAX in vivo. TAX mitigated the overexpression of ROS and NOX gene expression induced by DEX, effectively reducing oxidative stress. Additionally, TAX could alleviate DEX-induced osteoblast apoptosis, as evidenced by qRT-PCR, Western blotting, and other experimental techniques. Our in vivo studies further demonstrated that TAX mitigates the progression of GIONFH in rats by combating oxidative stress and apoptosis. Mechanistic exploration revealed that TAX thwarts the progression of GIONFH through the activation of the Nrf2 pathway. Overall, our research herein reports that TAX-mediated Nrf2 activation ameliorates oxidative stress and apoptosis for the treatment of GIONFH.


Subject(s)
Glucocorticoids , Osteonecrosis , Quercetin/analogs & derivatives , Rats , Animals , Glucocorticoids/adverse effects , NF-E2-Related Factor 2/metabolism , Signal Transduction , Femur Head/metabolism , X-Ray Microtomography , Oxidative Stress , Osteonecrosis/chemically induced , Osteonecrosis/drug therapy , Osteonecrosis/metabolism , Apoptosis
3.
Mol Neurobiol ; 61(1): 55-73, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37581847

ABSTRACT

Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.


Subject(s)
Fibroblast Growth Factors , Proto-Oncogene Proteins c-akt , Spinal Cord Injuries , Rats , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Pyroptosis , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/metabolism , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Autophagy
4.
BMC Musculoskelet Disord ; 24(1): 894, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978375

ABSTRACT

BACKGROUND: Steroid-induced avascular necrosis of the femoral head (SANFH) is characterized by osteoblast apoptosis, leading to a loss of bone structure and impaired hip joint function. It has been demonstrated that erythropoietin (EPO) performs a number of biological roles. OBJECTIVE: We examined the effects of EPO on SANFH and its regulation of the STAT1-caspase 3 signaling pathway. METHOD: In vitro, osteoblasts were treated with dexamethasone (Dex) or EPO. We identified the cytotoxicity of EPO by CCK-8, the protein expression of P-STAT1, cleaved-caspase9, cleaved-caspase3, Bcl-2, BAX, and cytochrome c by Western blotting, and evaluated the apoptosis of osteoblasts by flow cytometry. In vivo, we analyzed the protective effect of EPO against SANFH by hematoxylin and eosin (H&E), Immunohistochemical staining, and Micro-computed tomography (CT). RESULTS: In vitro, EPO had no apparent toxic effect on osteoblasts. In Dex-stimulated cells, EPO therapy lowered the protein expression of BAX, cytochrome c, p-STAT1, cleaved-caspase9, and cleaved-caspase3 while increasing the expression of Bcl-2. EPO can alleviate the apoptosis induced by Dex. In vivo, EPO can lower the percentage of empty bone lacunae in SANFH rats. CONCLUSION: The present study shows that EPO conferred beneficial effects in rats with SANFH by inhibiting STAT1-caspase 3 signaling, suggesting that EPO may be developed as a treatment for SANFH.


Subject(s)
Erythropoietin , Femur Head Necrosis , Rats , Animals , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Femur Head Necrosis/chemically induced , Femur Head Necrosis/drug therapy , Femur Head Necrosis/metabolism , Cytochromes c/metabolism , Cytochromes c/pharmacology , X-Ray Microtomography , Apoptosis , Signal Transduction , Osteoblasts/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Erythropoietin/pharmacology , Steroids/adverse effects
5.
J Ethnopharmacol ; 316: 116744, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37295574

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Osteoarthritis (OA) is a type of joint disorder that is marked by the gradual breakdown of cartilage and persistent inflammation of the synovial membrane, and is a leading cause of disability among elderly people worldwide. Oldenlandia diffusa (OD) is a member of the Rubiaceae family, and various researches have revealed that it possesses antioxidant, anti-inflammatory, and anti-tumor properties. Extracts of Oldenlandia diffusa is commonly used in traditional oriental medicine to treat various illnesses, including inflammation and cancer. AIM OF THE STUDY: This study is aimed at investigating the anti-inflammatory and anti-apoptosis effects of OD and its potential mechanisms on IL-1ß-induced mouse chondrocytes, as well as its characteristics in a mouse osteoarthritis model. MATERIALS AND METHODS: In this study, the key targets and potential pathways of OD were determined through network pharmacology analysis and molecular docking. The potential mechanism of OD in osteoarthritis was verified by in vitro and in vivo studies. RESULTS: The results of network pharmacology showed that Bax, Bcl2, CASP3, and JUN are key candidate targets of OD for the treatment of osteoarthritis. There is a strong correlation between apoptosis and both OA and OD. Additionally, molecular docking results show that ß-sitosterol in OD can strongly bind with CASP3 and PTGS2. In vitro experiments showed that OD pretreatment inhibited the expression of pro-inflammatory factors induced by IL-1ß, such as COX2, iNOS, IL-6, TNF-α, and PGE2. Furthermore, OD reversed IL-1ß-mediated degradation of collagen II and aggrecan within the extracellular matrix (ECM). The protective effect of OD can be attributed to its inhibition of the MAPK pathway and inhibition of chondrocyte apoptosis. Additionally, it was found that OD can alleviate cartilage degradation in a mouse model of knee osteoarthritis. CONCLUSION: Our study showed that ß-sitosterol, one of the active components of OD, could alleviate the inflammation and cartilage degeneration of OA by inhibiting chondrocyte apoptosis and MAPK pathway.


Subject(s)
Oldenlandia , Osteoarthritis , Mice , Animals , Chondrocytes , Caspase 3/metabolism , Molecular Docking Simulation , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism
6.
Int Immunopharmacol ; 115: 109683, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36630751

ABSTRACT

Osteoarthritis (OA) is a joint disease that is characterized by articular cartilage degeneration and destruction. Stevioside (SVS) is a diterpenoid glycoside extracted from Stevia rebaudiana Bertoni with some specific effects against inflammatory and apoptotic, whereas it is still unclear what function SVS has in osteoarthritis. This study focuses on the anti-inflammatory and anti-apoptosis functions of SVS on chondrocytes induced by interleukin (IL)-1beta, and the role of SVS in an osteoarthritis model for mice. We can detect the production of inflammatory factors such as nitric oxide (NO) and prostaglandin E2 (PGE2) using real-time quantitative polymerase chain reaction (RT-qPCR), the Griess reaction, and enzyme linked immunosorbent assay (ELISA). On the basis of Western blot, we have observed the protein expressions of cartilage matrix metabolism, inflammatory factors, and apoptosis of chondrocytes. Simultaneously, the pharmacological effects of SVS in mice were evaluated by hematoxylin and eosin (HE), toluidine blue, Safranin O, and immunohistochemical staining. The results show that SVS slows extracellular matrix degradation and chondrocyte apoptosis. In addition, SVS mediates its cellular effect by inhibiting the activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. Meanwhile, molecular docking studies revealed that SVS has excellent binding capabilities to p65, extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The study suggests that SVS can be developed as a potential osteoarthritis treatment.


Subject(s)
Cartilage, Articular , Osteoarthritis , Mice , Animals , Chondrocytes , NF-kappa B/metabolism , Molecular Docking Simulation , Inflammation/drug therapy , Inflammation/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Cartilage, Articular/metabolism , Interleukin-1beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...