Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 57(48): 20431-20439, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37992298

ABSTRACT

The interaction between mercury (Hg) and inorganic compounds, including selenium (Se), sulfur (S), and halogens (X = Cl, Br, or I), plays a critical role in the global mercury cycle. However, most previously reported mercury compounds are susceptible to reduction, leading to the release of elemental mercury (Hg0) and causing secondary pollution. In this study, we unveil a groundbreaking discovery that underscores the vital role of halogenation in creating exceptionally stable Hg3Se2X2 compounds. Through the dynamic interplay of Hg, Se, and halogens, an intermediary stage denoted [HgSe]m[HgX2]n emerges, and this transformative process significantly elevates the stabilization of mercury. Remarkably, halogen ions strategically occupy pores at the periphery of HgSe clusters, engendering a more densely packed atomic arrangement of Hg, Se, and halogen components. A marked enhancement in both thermal and acid stability is observed, wherein temperatures ascend from 130 to 300 °C (transitioning from HgSe to Hg3Se2Cl2). This sequence of escalating stability follows the order HgSe < Hg3Se2I2 < Hg3Se2Br2 < Hg3Se2Cl2 for thermal resilience, complemented by virtually absent acid leaching. This innovative compound formation fundamentally alters the transformation pathways of gaseous Hg0 and ionic mercury (Hg2+), resulting in highly efficient in situ removal of both Hg0 and Hg2+ ions. These findings pave the way for groundbreaking advancements in mercury stabilization and environmental remediation strategies, offering a comprehensive solution through the creation of chemically stable precipitates.


Subject(s)
Mercury Compounds , Mercury , Selenium , Mercury/chemistry , Halogenation , Halogens , Ions , Mercury Compounds/chemistry
2.
Environ Sci Technol ; 57(29): 10882-10890, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37436147

ABSTRACT

Gaseous elemental mercury (Hg0) extraction from industrial flue gases is undergoing intense research due to its unique properties. Selective adsorption that renders Hg0 to HgO or HgS over metal oxide- or sulfide-based sorbents is a promising method, yet the sorbents are easily poisoned by sulfur dioxide (SO2) and H2O vapor. The Se-Cl intermediate derived from SeO2 and HCl driven by SO2 has been demonstrated to stabilize Hg0. Thus, a surface-induced method was put forward when using γ-Al2O3 supported selenite-chloride (xSeO32--yCl-, named xSe-yCl) for mercury deposition. Results confirmed that under 3000 ppm SO2 and 4% H2O, Se-2Cl exhibited the highest induced adsorption performance at 160 °C and higher humidity can accelerate the induction process. Driven by SO2 under the wet interface, the in situ generated active Se0 has high affinity toward Hg0, and the introduction of Cl- enabled the fast-trapping and stabilization of Hg0 due to its intercalation in the HgSe product. Additionally, the long-time scale-up experiment showed a gradient color change of the Se-2Cl-induced surface, which maintained almost 100% Hg0 removal efficiency over 180 h with a normalized adsorption capacity of 157.26 mg/g. This surface-induced method has the potential for practical application and offers a guideline for reversing the negative effect of SO2 on gaseous pollutant removal.


Subject(s)
Air Pollutants , Environmental Pollutants , Mercury , Sulfur Dioxide , Mercury/analysis , Chlorides , Oxides , Adsorption , Air Pollutants/analysis
3.
Environ Sci Technol ; 57(13): 5424-5432, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36939455

ABSTRACT

Flue gas mercury removal is mandatory for decreasing global mercury background concentration and ecosystem protection, but it severely suffers from the instability of traditional demercury products (e.g., HgCl2, HgO, HgS, and HgSe). Herein, we demonstrate a superstable Hg3Se2Cl2 compound, which offers a promising next-generation flue gas mercury removal strategy. Theoretical calculations revealed a superstable Hg bonding structure in Hg3Se2Cl2, with the highest mercury dissociation energy (4.71 eV) among all known mercury compounds. Experiments demonstrate its unprecedentedly high thermal stability (>400 °C) and strong acid resistance (5% H2SO4). The Hg3Se2Cl2 compound could be produced via the reduction of SeO32- to nascent active Se0 by the flue gas component SO2 and the subsequent combination of Se0 with Hg0 and Cl- ions or HgCl2. During a laboratory-simulated experiment, this Hg3Se2Cl2-based strategy achieves >96% removal efficiencies of both Hg0 and HgCl2 enabling nearly zero Hg0 re-emission. As expected, real mercury removal efficiency under Se-rich industrial flue gas conditions is much more efficient than Se-poor counterparts, confirming the feasibility of this Hg3Se2Cl2-based strategy for practical applications. This study sheds light on the importance of stable demercury products in flue gas mercury treatment and also provides a highly efficient and safe flue gas demercury strategy.


Subject(s)
Air Pollutants , Mercury , Mercury/analysis , Ecosystem , Gases/chemistry , Air Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL