Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Pharm Biomed Anal ; 220: 115006, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36007307

ABSTRACT

Fever in children is one of the most common symptoms of pediatric diseases and the most common complaint in pediatric clinics, especially in the emergency department. Diseases such as pneumonia, sepsis, and meningitis are leading causes of death in children, and the early manifestations of these diseases are accompanied by fever symptoms. Accurate diagnosis and real-time monitoring of the status of febrile children, rapid and effective identification of the cause, and treatment can have a positive impact on relieving their symptoms and improving their quality of life. In recent years, wearable diagnostic sensors have attracted special attention for their high flexibility, real-time monitoring, and sensitivity. Temperature sensors and heart rate sensors have provided new advances in detecting children's body temperature and heart rate. Furthermore, some novel formulations have also received wide attention for addressing bottlenecks in medication administration for febrile children, such as difficulty in swallowing and inaccurate dosing. In this context, the present review provides recent advances of novel wearable medical sensor devices for diagnosing fever. Moreover, the application progress of innovative dosage forms of classical antipyretic drugs for children is presented. Finally, challenges and prospects of wearable sensor-based diagnostics and novel agent-based treatment of fever in children are discussed in brief.


Subject(s)
Antipyretics , Wearable Electronic Devices , Child , Fever/diagnosis , Fever/drug therapy , Humans , Quality of Life
2.
Mol Pharm ; 19(9): 3007-3025, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35848076

ABSTRACT

Orodispersible dosage forms, characterized as quick dissolving and swallowing without water, have recently gained great attention from the pharmaceutical industry, as these forms can satisfy the needs of children, the elderly, and patients suffering from mental illnesses. However, poor taste by thorough exposure of the drugs' dissolution in the oral cavity hinders the effectiveness of the orodispersible dosage forms. To bridge this gap, we put forward three taste-masking strategies with respect to the intensity of time, concentration, and perception. We further investigated the raw material processing, the composition of auxiliary material, formulation techniques, and process control in each strategy and drew conclusions about their effects on taste masking.


Subject(s)
Perception , Taste , Administration, Oral , Aged , Child , Dosage Forms , Drug Compounding/methods , Drug Liberation , Humans , Solubility
3.
Pharmacol Res ; 179: 106189, 2022 05.
Article in English | MEDLINE | ID: mdl-35331865

ABSTRACT

Recently, comparative studies have rapidly increased with the closer correlation between microbiota and neurological diseases. However, most insights about the association between microbiota and neurological diseases still focus on the gut-brain axis and ignore that nasal microbiota could form a complex and essential link with the nervous system via the nose-to-brain pathway, suggesting the role in modulating the immune system, metabolic system, and nervous system development, which influence the physiopathology of neurological diseases. Due to the complex interactions between nasal microbiota and the brain, the nasal microbiota may have a particular pathogenic effect and therapeutic potential on neurological diseases. Therefore, this review aims to deeply analyze the dual effects of nasal microbiota on neurological diseases, focusing on pathogenic and therapeutic effects to provide a new perspective for preventing and treating neurological diseases by altering nasal microbiota. This review concludes the bidirectional effects of nasal microbiota on neurological diseases, including the pathogenicity and potential treatment on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Stroke. Furthermore, modern medical technology combined with artificial intelligence, including implantable sensors, modeling software, and nanofluid techniques, may further study the complex effects between nasal microbiota and the brain, thereby providing new options for treating neurological diseases.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Nervous System Diseases , Artificial Intelligence , Brain/metabolism , Gastrointestinal Microbiome/physiology , Humans , Nervous System Diseases/metabolism , Risk Factors
4.
Zhongguo Zhong Yao Za Zhi ; 47(2): 343-357, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178976

ABSTRACT

A UHPLC-Q Exactive Orbitrap MS method was used to analyze the chemical constituents of the classical prescription Qianghuo Shengshi Standard Decoction(QHSS). UHPL conditions were as follows: Waters~(TM) UPLC~(TM) HSS T3 C_(18) column(2.1 mm×100 mm, 1.7 µm) and mobile phase of acetonitrile-0.1% formic acid aqueous solution. Mass spectrometry data of QHSS, each herb extract, and negative sample were collected in both positive and negative ion modes. The chemical constituents of QHSS were identified or tentatively identified based on the accurate molecular weight, retention time, MS fragmentation, comparison with reference substances, and literature reports. A total of 141 compounds were identified, including 18 amino acids, oligosaccharides, oligopeptides, and their derivatives, 19 phenolic acids, 44 coumarins, 18 flavonoids and chromones, 13 saponins, 17 phthalides, and 12 other components. This study comprehensively characterized the chemical constituents of QHSS, laying an experimental basis for the in-depth research on the material basis and quality control of QHSS.


Subject(s)
Drugs, Chinese Herbal , Quality Control , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Gas Chromatography-Mass Spectrometry , Mass Spectrometry
5.
Front Pharmacol ; 12: 719758, 2021.
Article in English | MEDLINE | ID: mdl-34899289

ABSTRACT

The current Coronavirus disease 2019 (COVID-19) pandemic has become a global challenge, and although vaccines have been developed, it is expected that mild to moderate patients will control their symptoms, especially in developing countries. Licorice, not only a food additive, but also a common traditional Chinese herbal medicine, which has several pharmacological effects, such as anti-inflammation, detoxification, antibacterial, antitussive, and immunomodulatory effects, especially in respiratory diseases. Since the outbreak of COVID-19, glycyrrhizin, glycyrrhizin diamine and glycyrrhizin extract have been widely studied and used in COVID-19 clinical trials. Therefore, it is a very interesting topic to explore the material basis, pharmacological characteristics and molecular mechanism of licorice in adjuvant treatment of COVID-19. In this paper, the material basis of licorice for the prevention and treatment of COVID-19 is deeply analyzed, and there are significant differences among different components in different pharmacological mechanisms. Glycyrrhizin and glycyrrhetinic acid inhibit the synthesis of inflammatory factors and inflammatory mediators by blocking the binding of ACE 2 to virus spike protein, and exert antiviral and antibacterial effects. Immune cells are stimulated by multiple targets and pathways to interfere with the pathogenesis of COVID-19. Liquiritin can prevent and cure COVID-19 by simulating type I interferon. It is suggested that licorice can exert its therapeutic advantage through multi-components and multi-targets. To sum up, licorice has the potential to adjuvant prevent and treat COVID-19. It not only plays a significant role in anti-inflammation and anti-ACE-2, but also significantly improves the clinical symptoms of fever, dry cough and shortness of breath, suggesting that licorice is expected to be a candidate drug for adjuvant treatment of patients with early / mild COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...