Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 323: 117608, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38158098

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Xianglianhuazhuo formula (XLHZ) has a potential therapeutic effect on chronic atrophic gastritis (CAG). However, the specific molecular mechanism remains unclear. AIM OF THE STUDY: To evaluate the effect of XLHZ on CAG in vitro and in vivo and its potential mechanisms. METHODS: A rat model of CAG was established using a composite modeling method, and the pathological changes and ultrastructure of gastric mucosa were observed. YY1/miR-320a/TFRC and ferroptosis-related molecules were detected. An MNNG-induced gastric epithelial cell model was established in vitro to evaluate the inhibitory effect of XLHZ on cell ferroptosis by observing cell proliferation, migration, invasion, apoptosis, and molecules related to ferroptosis. The specific mechanism of action of XLHZ in treating CAG was elucidated by silencing or overexpression of targets. RESULTS: In vivo experiments showed that XLHZ could improve the pathological status and ultrastructure of gastric mucosa and inhibit ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway. The results in vitro demonstrated that transfection of miR-320a mimics inhibited cell proliferation, migration, and invasion while promoting cell apoptosis. MiR-320a targeted TFRC and inhibited ferroptosis. Overexpression of TFRC reversed the inhibitory effect of miR-320a overexpression on cell proliferation. The effect of XLHZ was consistent with that of miR-320a. YY1 targeted miR-320a, and its overexpression promoted ferroptosis. CONCLUSION: XLHZ inhibited ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway, ultimately impeding the progression of CAG.


Subject(s)
Ferroptosis , Gastritis, Atrophic , MicroRNAs , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Gastritis, Atrophic/drug therapy , Gastritis, Atrophic/genetics , Signal Transduction , Cell Proliferation
2.
Biomedicines ; 11(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37760781

ABSTRACT

BACKGROUND: Chronic atrophic gastritis (CAG) is a chronic inflammatory disease and premalignant lesion of gastric cancer. As an antimicrobial peptide, hepcidin can maintain iron metabolic balance and is susceptible to inflammation. OBJECTIVES: The objective of this study was to clarify whether hepcidin is involved in abnormal iron metabolism and ferroptosis during CAG pathogenesis. METHODS: Non-atrophic gastritis (NAG) and chronic atrophic gastritis (CAG) patient pathology slides were collected, and related protein expression was detected by immunohistochemical staining. The CAG rat model was established using MNNG combined with an irregular diet. RESULTS: CAG patients and rats exhibited iron deposition in gastric tissue. CAG-induced ferroptosis in the stomach was characterized by decreased GPX4 and FTH levels and increased 4-HNE levels. Hepcidin, which is mainly located in parietal cells, was elevated in CAG gastric tissue. The high gastric level of hepcidin inhibited iron absorption in the duodenum by decreasing the protein expression of DMT1 and FPN1. In addition, the IL-6/STAT3 signaling pathway induced hepcidin production in gastric tissue. CONCLUSION: Our results showed that the high level of gastric hepcidin induced ferroptosis in the stomach but also inhibited iron absorption in the intestines. Inhibiting hepcidin might be a new strategy for the prevention of CAG in the future.

3.
Open Med (Wars) ; 18(1): 20230785, 2023.
Article in English | MEDLINE | ID: mdl-37693835

ABSTRACT

Ulcerative colitis (UC) is an inflammatory bowel disease and associated with metabolic imbalance. Luteolin (LUT) reportedly exhibits anti-inflammatory activity. However, its regulatory effects on metabolites remain indistinct. Here, the effects of LUT on immune response and oxidative stress in UC were determined. Serum metabolomics profiles of UC rats treated with LUT were obtained utilizing liquid chromatography-mass spectrometry. The results revealed that LUT treatment alleviated colon tissue injury, colon shortening, weight loss, and inflammatory response in UC rats. Additionally, the levels of superoxide dismutase and total antioxidant capacity were elevated, but malondialdehyde content was reduced in serum of UC rats, while these changes were abrogated by LUT. Metabolomics analysis unveiled that l-malic acid, creatinine, l-glutamine, and l-lactic acid levels were remarkably decreased, while dimethyl sulfone, 5-methylcytosine, cysteine-S-sulfate, and jasmonic acid levels were notably increased after LUT treatment. Furthermore, differential metabolites primarily participated in d-glutamine and d-glutamate metabolism, glutathione metabolism, and citrate cycle pathways. In summary, these results demonstrated that LUT improved immune response, alleviated oxidative stress, and altered metabolites in UC rats. This study lays the root for further exploring the mechanism of LUT in the treatment of UC.

4.
Front Pharmacol ; 13: 1033874, 2022.
Article in English | MEDLINE | ID: mdl-36313293

ABSTRACT

Huazhuojiedu decoction (HZJDD), a traditional Chinese medicine prescription, has been clinically proven to be an effective treatment for ulcerative colitis (UC). However, the mechanism of HZJDD in the treatment of UC remains unclear. This study combined network pharmacology with experimental validation to explore the potential mechanism of HZJDD on UC. First, the relationship network diagrams between HZJDD and UC were established based on multiple databases. Then, the HZJDD-UC intersection genes target network was constructed and Gene Ontology-Biological processes (GO-BP) analysis was performed to discover the potential pharmacological mechanism. Finally, the results of GO-BP were verified in dextran sulfate sodium salt (DSS) induced UC rats. The network pharmacology results showed that 119 active components and 146 potential targets were screened for HZJDD, and six of the top 15 biological processes belonged to inflammatory response, cellular response to hypoxia, and cellular response to lipopolysaccharide (LPS). The GO-BP results indicated that the mechanism of HZJDD treatment of UC was related to inflammation, oxidative stress, and the regulation of LPS. Animal experiments showed that HZJDD could significantly reduce the disease activity index (DAI) score, improve colon length, and effectively repair the histomorphological and micromorphological changes in DSS-induced UC rats. Moreover, HZJDD reduced the expressions of CRP, TNF-α, IL-6, LPS, IL-1ß, and IL-18; downregulated the activity of MDA; and upregulated the activities of CAT, GSH, and SOD in DSS-induced UC rats. Furthermore, HZJDD suppressed the expression of the NLRP3/caspase-1 signaling pathway at the gene and protein levels to inhibit pyroptosis. Network pharmacology and animal experiments showed that HZJDD exerted a therapeutic effect on DSS-induced UC rats by reducing inflammation, oxidative stress, and restraining the NLRP3/caspase-1 signaling pathway to inhibit pyroptosis.

5.
Inflamm Res ; 70(6): 705-717, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34014331

ABSTRACT

BACKGROUND: Previous studies have demonstrated that Luteolin has a positive effect on epithelial barrier integrity by promoting the function of tight protein, however, little is known about the underline mechanism of Luteolin. In this study, we constructed Caco-2 cell monolayer to explore the effects and the regulation mechanism of Luteolin in intestinal epithelial barrier integrity. METHODS: Caco-2 cells were co-treated with TNF-α, Interferon-γ (IFN-γ) and Luteolin for 24 h. Overexpression or knockdown of SHP-1 was applied to study the effects of protein phosphoserine phosphatase-1 (SHP-1) on epithelial barrier integrity. Cell viability was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Barrier function was detected by trans-epithelial electrical resistance (TEER) and FITC-dextran assay. The expression levels of SHP-1, phosphorylation signal transducer and activator of transcription 3 (p-STAT3), STAT3 and tight junction proteins were measured by qRT-PCR or western blot. In vivo model of ulcerative colitis was established to detect the function of Luteolin in ulcerative colitis. RESULTS: We clarified that Luteolin protected intestinal epithelial barrier function of Caco-2 monolayers by increasing the resistance values and tight junction (TJ) protein expression. The expression of OCLN, CLDN1, and ZO1 was increased by Luteolin, while the expression of CLDN2 was decreased. Furthermore, Luteolin significantly alleviated the symptom of ulcerative colitis in DSS-induced mice. The in vitro cell model proved that overexpression of SHP-1 promotes the epithelial barrier function and knockdown of SHP-1 or STAT3 activation destroyed the protective effects of Luteolin on the expression of TJ proteins. CONCLUSION: We found that the treatment of Luteolin promoted epithelial barrier function and Luteolin might preserve intestinal epithelial barrier function through suppression of STAT3 signaling pathway by SHP-1.


Subject(s)
Colitis, Ulcerative/drug therapy , Luteolin/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , STAT3 Transcription Factor/metabolism , Animals , Caco-2 Cells , Cell Membrane Permeability/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colon/drug effects , Colon/metabolism , Colon/pathology , Dextran Sulfate , Humans , Luteolin/pharmacology , Male , Mice, Inbred C57BL , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Signal Transduction/drug effects , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
6.
Life Sci ; 269: 119008, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33434535

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease related to intestinal dysbiosis. Luteolin has been reported to reduce inflammation. However, it remains unclear whether luteolin ameliorates UC and regulates gut microbiota. In this study, we investigated the effects of luteolin on colonic structure and inflammation of dextran sulfate sodium (DSS)-induced rats using hematoxylin-eosin staining, immunohistochemistry and enzyme-linked immunosorbent assay and evaluated the effects of luteolin on gut microbiota using 16S rDNA sequencing. We found that luteolin treatment significantly reduced colonic damage, and inhibited colonic inflammation in UC rats, evidenced by the decreased levels of NF-κB, IL-17 and IL-23 in UC rats and the increased level of PPAR-γ. In addition, the 16S rDNA sequencing analysis revealed that luteolin treatment could alter diversity and composition of gut microbiota in UC rats. Lactobacillus, Bacteroides, Roseburia and Butyricicoccus were dominant genera in the luteolin group. Luteolin treatment reduced DSS-induced increased ratios of Lactobacillus and Prevotella_9. Furthermore, KEGG analysis revealed that gut microbiota was mainly related to DNA repair and recombination proteins, ribosome, purine metabolism, peptidases, and pyrimidine metabolism. In conclusion, our results revealed that luteolin could alleviate DSS-induced colitis in rats, and gut microbiota had the potential to serve as promising biomarkers for uncovering the mechanism by which luteolin improved UC.


Subject(s)
Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Gastrointestinal Microbiome , Inflammation/drug therapy , Inflammation/microbiology , Luteolin/therapeutic use , Animals , Bacteria/classification , Colitis, Ulcerative/complications , Colon/pathology , Discriminant Analysis , Gastrointestinal Microbiome/drug effects , Inflammation/complications , Inflammation Mediators/metabolism , Luteolin/pharmacology , Male , Principal Component Analysis , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...