Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Environ Res ; 201: 106687, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173207

ABSTRACT

In the coastal waters around Shandong peninsula, an unprecedented winter bloom of dinoflagellates Gonyaulax polygramma and Akashiwo sanguinea occurred in 2021 from late November to early December. The bloom affected a wide area of coastal waters extending from west to east along the northern Shandong peninsula and had a devastating blow to the kelp cultivation industry. Based on the remote-sensing data, the initiation of the bloom was traced back to the region adjacent to the mouth of the Yellow River in Laizhou Bay, where enhanced freshwater discharge from the Yellow River was recorded from September to November. It's proposed that the increased precipitation in the Yellow River basin associated with northward extension of the precipitation band in China could be an important reason for this winter bloom. This unusual winter bloom around Shandong peninsula highlights the potential risks of harmful algal blooms and their impacts on coastal ecosystems under the background of climate change.


Subject(s)
Aquaculture , Dinoflagellida , Harmful Algal Bloom , Seaweed , Seaweed/growth & development , Seasons , Seawater/chemistry , China , Climate Change , Ecosystem , Phytoplankton
2.
Mater Today Bio ; 26: 101104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952539

ABSTRACT

Clinical treatment of diabetic refractory ulcers is impeded by chronic inflammation and cell dysfunction associated with wound healing. The significant clinical application of bFGF in wound healing is limited by its instability in vivo. Sulfur has been applied for the treatment of skin diseases in the clinic for antibiosis. We previously found that sulfur incorporation improves the ability of selenium nanoparticles to accelerate wound healing, yet the toxicity of selenium still poses a risk for its clinical application. To obtain materials with high pro-regeneration activity and low toxicity, we explored the mechanism by which selenium-sulfur nanoparticles aid in wound healing via RNA-Seq and designed a nanoparticle called Nano-S@bFGF, which was constructed from sulfur and bFGF. As expected, Nano-S@bFGF not only regenerated zebrafish tail fins and promoted skin wound healing but also promoted skin repair in diabetic mice with a profitable safety profile. Mechanistically, Nano-S@bFGF successfully coactivated the FGFR and Hippo signalling pathways to regulate wound healing. Briefly, the Nano-S@bFGF reported here provides an efficient and feasible method for the synthesis of bioactive nanosulfur and bFGF. In the long term, our results reinvigorated efforts to discover more peculiar unique biofunctions of sulfur and bFGF in a great variety of human diseases.

3.
Plants (Basel) ; 12(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37111819

ABSTRACT

Rice lodging seriously affects rice quality and production. Traditional manual methods of detecting rice lodging are labour-intensive and can result in delayed action, leading to production loss. With the development of the Internet of Things (IoT), unmanned aerial vehicles (UAVs) provide imminent assistance for crop stress monitoring. In this paper, we proposed a novel lightweight detection system with UAVs for rice lodging. We leverage UAVs to acquire the distribution of rice growth, and then our proposed global attention network (GloAN) utilizes the acquisition to detect the lodging areas efficiently and accurately. Our methods aim to accelerate the processing of diagnosis and reduce production loss caused by lodging. The experimental results show that our GloAN can lead to a significant increase in accuracy with negligible computational costs. We further tested the generalization ability of our GloAN and the results show that the GloAN generalizes well in peers' models (Xception, VGG, ResNet, and MobileNetV2) with knowledge distillation and obtains the optimal mean intersection over union (mIoU) of 92.85%. The experimental results show the flexibility of GloAN in rice lodging detection.

4.
Food Funct ; 13(18): 9481-9495, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-35993118

ABSTRACT

Obesity is a chronic disease that may lead to the development of metabolic diseases, cardiovascular diseases, and cancers and has been predicted to affect one billion adults by 2030. Owing to the pivotal role of the gut microbiota in health, including metabolism and energy homeostasis, dietary fiber, the primary energy resource for the gut microbiota, not only helps reduce appetite and short-term food intake but also modulates the structure of the gut microbiota. In this study, we investigated whether high-amylose maize (HAM), with a particular amount of dietary fiber, improves dysmetabolism and gut microbiota dysbiosis in diet-induced obese mice. Promisingly, the HAM dietary intervention not only reduced body weight gain, adipocyte hypertrophy, and dyslipidemia but also mitigated non-alcoholic fatty liver disease, insulin resistance, impaired glucose tolerance, and inflammation in the liver and epididymal white adipose tissues in high-fat diet (HFD)-fed obese mice. In addition, the HAM dietary intervention ameliorated gut microbiota dysbiosis in HFD-fed mice. Changes in families, genera, and species of gut biota that have a relative abundance of 0.01% in at least one group were scrutinized. At the species level, HAM dietary intervention increased Bifidobacterium pseudolongum, Bifidobacterium animalis, Bifidobacterium bifidum, and Lactobacillus paraplantarum and decreased Streptococcus agalactiae, Mucispirillum schaedleri, and Alistipes indistinctus. This change in the gut microbiota driven by the HAM diet was strongly associated with obesity-related indices, highlighting the nutraceutical potential of HAM for improving overall metabolic health. Taken together, this study demonstrates the potential of the HAM diet for mediating metabolic syndrome and gut microbiota dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Amylose , Animals , Diet, High-Fat/adverse effects , Dietary Fiber , Dysbiosis/microbiology , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Zea mays
5.
Bioact Mater ; 15: 131-144, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35386336

ABSTRACT

Selenium (Se) is an essential trace element involved in nearly all human physiological processes but suffers from a narrow margin between benefit and toxicity. The nanoform of selenium has been proven shown to be more bioavailable and less toxic, yet significant challenges remain regarding the efficient and feasible synthesis of biologically active nanoselenium. In addition, although nanoselenium has shown a variety of biological activities, more interesting nanoselenium features are expected. In this work, hydrosoluble nanoselenium termed Nano-Se in the zero oxidation state was synthesized between gray Se and PEG. A zebrafish screen was carried out in zebrafish larvae cocultured with Nano-Se. Excitingly, Nano-Se promoted the action of the FGFR, Wnt, and VEGF signaling pathways, which play crucial roles in tissue regeneration. As expected, Nano-Se not only achieved the regeneration of zebrafish tail fins and mouse skin but also promoted the repair of skin in diabetic mice while maintaining a profitable safe profile. In brief, the Nano-Se reported here provided an efficient and feasible method for bioactive nanoselenium synthesis and not only expanded the application of nanoselenium to regenerative medicine but also likely reinvigorated efforts for discovering more peculiarunique biofunctions of nanoselenium in a great variety of human diseases.

6.
Sci Total Environ ; 807(Pt 3): 151030, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34673067

ABSTRACT

Microplastics (MPs) are emerging environmental pollutants and their accumulation in the soil can adversely affect the soil biota. This study aims to employ hyperspectral imaging technology for the rapid screening and classification of MPs in farmland soil. In this study, a total of 600 hyperspectral data are collected from 180 sets of farmland soil samples with a hyperspectral imager in the wavelength range of 369- 988 nm. To begin, the hyperspectral data are preprocessed by the Savitzky-Golay (S-G) smoothing filter and mean normalization. Second, principal component analysis (PCA) is used to minimize the dimensions of the hyperspectral data and hence the amount of data, making the subsequent model easier to construct. The cumulative contribution rate of the first three principal components is reached 98.37%, including the main information of the original spectral data. Finally, three models including decision tree (DT), support vector machine (SVM), and convolutional neural network (CNN) are established, all of which can achieve well classification effects on three MP polymers including polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) in farmland soil. By comparing the recognition accuracy of the three models, the classification accuracy of DT and SVM is 87.9% and 85.6%, respectively. The CNN model based on the S-G smoothing filter obtains the best prediction effect, the classification accuracy reaches 92.6%, exhibiting obvious advantages in classification effect. Altogether, these results show that the proposed hyperspectral imaging technique identifies the soil MPs rapidly and nondestructively, and provides an effective automated method for the detection of polymers, requiring only rapid and simple sample preparation.


Subject(s)
Microplastics , Soil , Farms , Hyperspectral Imaging , Plastics , Technology
7.
Nutrients ; 13(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34579036

ABSTRACT

Metabolic syndrome and its associated conditions, such as obesity and type 2 diabetes mellitus (T2DM), are a major public health issue in modern societies. Dietary interventions, including microbiota-directed foods which effectively modulate the gut microbiome, may influence the regulation of obesity and associated comorbidities. Although research on probiotics and prebiotics has been conducted extensively in recent years, diets with the use of synbiotics remain relatively unexplored. Here, we investigated the effects of a novel synbiotic intervention, consisting of an adlay seed extrusion cooked (ASEC)-based prebiotic and probiotic (Lactobacillus paracasei and Bacillus coagulans) on metabolic disorders and microbial dysbiosis in high-fat diet (HFD)-induced obese mice. The ASEC-based synbiotic intervention helped improve HFD-induced body weight gain, hyperlipidemia, impaired glucose tolerance, insulin resistance, and inflammation of the adipose and liver tissues. In addition, data from fecal metagenomics indicated that the ASEC-based synbiotic intervention fostered reconstitution of gut bacterial diversity and composition in HFD-induced obese mice. In particular, the ASEC-based synbiotic intervention increased the relative abundance of families Ruminococcaceae and Muribaculaceae and order Bacteroidales and reduced that of families Lactobacillaceae, Erysipelotrichaceae, and Streptococcaceae in HFD-induced obese mice. Collectively, our results suggest that delayed dietary intervention with the novel ASEC-based synbiotic ameliorates HFD-induced obesity, metabolic disorders, and dysbiosis.


Subject(s)
Diet, High-Fat/adverse effects , Dysbiosis/chemically induced , Gastrointestinal Microbiome/drug effects , Prebiotics , Probiotics , Synbiotics , Adipose Tissue , Animal Feed/analysis , Animals , Bacteria/classification , Bacteria/genetics , Body Weight , Dyslipidemias , Insulin Resistance , Male , Mice , Obesity/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL