Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1348295, 2024.
Article in English | MEDLINE | ID: mdl-38525142

ABSTRACT

Plant roots are constantly prepared to adjust their growth trajectories to avoid unfavorable environments, and their ability to reorient is particularly crucial for survival. Under laboratory conditions, this continuous reorientation of the root tip is manifested as coiling or waving, which we refer to as root circumnutation. However, the effect of ambient temperature (AT) on root circumnutation remains unexplored. In this study, rice seedlings were employed to assess the impact of varying ATs on root circumnutation. The role of ethylene in mediating root circumnutation under elevated AT was examined using the ethylene biosynthesis inhibitor aminooxyacetic acid (AOA) and the ethylene perception antagonist silver thiosulfate (STS). Furthermore, transcriptome sequencing, weighted gene co-expression network analysis, and real-time quantitative PCR were utilized to analyze gene expressions in rice root tips under four distinct treatments: 25°C, 35°C, 35°C+STS, and 35°C+AOA. As a result, genes associated with ethylene synthesis and signaling (OsACOs and OsERFs), auxin synthesis and transport (OsYUCCA6, OsABCB15, and OsNPFs), cell elongation (OsEXPAs, OsXTHs, OsEGL1, and OsEXORDIUMs), as well as the inhibition of root curling (OsRMC) were identified. Notably, the expression levels of these genes increased with rising temperatures above 25°C. This study is the first to demonstrate that elevated AT can induce root circumnutation in rice via the ethylene pathway and proposes a potential molecular model through the identification of key genes. These findings offer valuable insights into the growth regulation mechanism of plant roots under elevated AT conditions.

2.
Plant J ; 117(3): 729-746, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37932930

ABSTRACT

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves. Among these PSI-PAPs, SgPAP7 exhibited a significantly positive correlation in its expression levels with the activities of both internal APase and root-associated APase across 20 stylo genotypes under low-Pi conditions. Furthermore, the recombinant SgPAP7 displayed high catalytic activity toward adenosine 5'-diphosphate (ADP) and phosphoenolpyruvate (PEP) in vitro. Overexpression (OE) of SgPAP7 in Arabidopsis facilitated exogenous organic phosphorus utilization. Moreover, SgPAP7 OE lines showed lower shoot ADP and PEP levels than the wild type, implying that SgPAP7 is involved in the catabolism and recycling of endogenous ADP and PEP, which could be beneficial for plant growth in low-Pi soils. In conclusion, SgPAP7 is a key gene with a major role in stylo adaptation to low-Pi conditions by facilitating the utilization of both exogenous and endogenous organic phosphorus sources. It may also function as a PEP phosphatase involved in a glycolytic bypass pathway that minimizes the need for adenylates and Pi. Thus, SgPAP7 could be a promising target for improving tolerance of crops to low-Pi availability.


Subject(s)
Arabidopsis , Fabaceae , Fabaceae/genetics , Fabaceae/metabolism , Multiomics , Proteomics , Phosphorus/metabolism , Vegetables/metabolism , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Arabidopsis/genetics , Plant Roots/genetics , Plant Roots/metabolism , Gene Expression Regulation, Plant
3.
Front Plant Sci ; 14: 1222414, 2023.
Article in English | MEDLINE | ID: mdl-37746005

ABSTRACT

Light serves not only as a signaling cue perceived by plant photoreceptors but also as an essential energy source captured by chloroplasts. However, excessive light can impose stress on plants. Fern gametophytes possess the unique ability to survive independently and play a critical role in the alternation of generations. Due to their predominantly shaded distribution under canopies, light availability becomes a limiting factor for gametophyte survival, making it imperative to investigate their response to light. Previous research on fern gametophytes' light response has been limited to the physiological level. In this study, we examined the light response of Adiantum flabellulatum gametophytes under different photosynthetic photon flux density (PPFD) levels and identified their high sensitivity to low light. We thereby determined optimal and stress-inducing light conditions. By employing transcriptome sequencing, weighted gene co-expression network analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, we identified 10,995 differentially expressed genes (DEGs). Notably, 3 PHYBs and 5 Type 1 CRYs (CRY1s) were significantly down-regulated at low PPFD (0.1 µmol m-2 s-1). Furthermore, we annotated 927 DEGs to pathways related to photosynthesis and 210 to the flavonoid biosynthesis pathway involved in photoprotection. Additionally, we predicted 34 transcription factor families and identified a close correlation between mTERFs and photosynthesis, as well as a strong co-expression relationship between MYBs and bHLHs and genes encoding flavonoid synthesis enzymes. This comprehensive analysis enhances our understanding of the light response of fern gametophytes and provides novel insights into the mechanisms governing their responses to light.

4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902267

ABSTRACT

Senna tora is one of the homologous crops used as a medicinal food containing an abundance of anthraquinones. Type III polyketide synthases (PKSs) are key enzymes that catalyze polyketide formation; in particular, the chalcone synthase-like (CHS-L) genes are involved in anthraquinone production. Tandem duplication is a fundamental mechanism for gene family expansion. However, the analysis of the tandem duplicated genes (TDGs) and the identification and characterization of PKSs have not been reported for S. tora. Herein, we identified 3087 TDGs in the S. tora genome; the synonymous substitution rates (Ks) analysis indicated that the TDGs had recently undergone duplication. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the type III PKSs were the most enriched TDGs involved in the biosynthesis of the secondary metabolite pathways, as evidenced by 14 tandem duplicated CHS-L genes. Subsequently, we identified 30 type III PKSs with complete sequences in the S. tora genome. Based on the phylogenetic analysis, the type III PKSs were classified into three groups. The protein conserved motifs and key active residues showed similar patterns in the same group. The transcriptome analysis showed that the chalcone synthase (CHS) genes were more highly expressed in the leaves than in the seeds in S. tora. The transcriptome and qRT-PCR analysis showed that the CHS-L genes had a higher expression in the seeds than in other tissues, particularly seven tandem duplicated CHS-L2/3/5/6/9/10/13 genes. The key active-site residues and three-dimensional models of the CHS-L2/3/5/6/9/10/13 proteins showed slight variation. These results indicated that the rich anthraquinones in S. tora seeds might be ascribed to the PKSs' expansion from tandem duplication, and the seven key CHS-L2/3/5/6/9/10/13 genes provide candidate genes for further research. Our study provides an important basis for further research on the regulation of anthraquinones' biosynthesis in S. tora.


Subject(s)
Acyltransferases , Polyketide Synthases , Phylogeny , Polyketide Synthases/metabolism , Acyltransferases/genetics , Anthraquinones/metabolism
5.
New Phytol ; 238(1): 186-201, 2023 04.
Article in English | MEDLINE | ID: mdl-36564978

ABSTRACT

As the seed precursor, the ovule produces the female gametophyte (or embryo sac), and the subsequent double fertilization occurs in it. The integuments emerge sequentially from the integument primordia at the early stages of ovule development and finally enwrap the embryo sac gradually during gametogenesis, protecting and nursing the embryo sac. However, the mechanisms regulating integument development are still obscure. In this study, we show that SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES (SERKs) play essential roles during integument development in Arabidopsis thaliana. The serk1/2/3 triple mutant shows arrested integuments and abnormal embryo sacs, similar defects also found in the triple loss-of-function mutants of ERECTA family (ERf) genes. Ovules of serk1/2/3 er erl1/2 show defects similar to er erl1/2 and serk1/2/3. Results of yeast two-hybrid analyses, bimolecular fluorescence complementation (BiFC) analyses, and co-immunoprecipitation assays demonstrated that SERKs interact with ERf, which depends on EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family small peptides. The sextuple mutant epfl1/2/3/4/5/6 shows integument defects similar to both of er erl1/2 and serk1/2/3. Our results demonstrate that ERf-SERK-mediated EPFL signaling orchestrates the development of the female gametophyte and the surrounding sporophytic integuments.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Signal Transduction , Reproduction , Ovule/metabolism , Gene Expression Regulation, Plant
6.
Genes (Basel) ; 13(6)2022 06 14.
Article in English | MEDLINE | ID: mdl-35741824

ABSTRACT

Brassinosteroids (BRs) are a class of polyhydroxysteroid plant hormones; they play important roles in the development and stress resistance of plants. The research on BRs has mainly been carried out in angiosperms, but in ferns-research is still limited to the physiological level and is not in-depth. In this study, Adiantum flabellulatum gametophytes were used as materials and treated with 10-6 M brassinolide (BL). The differentially expressed genes (DEGs) responsive to BRs were identified by transcriptome sequencing, GO, KEGG analysis, as well as a quantitative real-time polymerase chain reaction. From this, a total of 8394 DEGs were screened. We found that the expressions of photosynthetic genes were widely inhibited by high concentrations of BL in A. flabellulatum gametophytes. Moreover, we detected many BR synthase genes, except BR6ox2, which may be why castasterone (CS) rather than BL was detected in ferns. Additionally, we identified (for the first time) that the expressions of BR synthase genes (CYP90B1, CYP90C1, CYP90D1, CPD, and BR6ox1) were negatively regulated by BL in fern gametophytes, which indicated that ferns, including gametophytes, also needed the regulatory mechanism for maintaining BR homeostasis. Based on transcriptome sequencing, this study can provide a large number of gene expression data for BRs regulating the development of fern gametophytes.


Subject(s)
Adiantum , Arabidopsis Proteins , Arabidopsis , Adiantum/genetics , Adiantum/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Germ Cells, Plant , Transcriptome/genetics
7.
PeerJ ; 10: e13079, 2022.
Article in English | MEDLINE | ID: mdl-35287343

ABSTRACT

Ferns are important components of plant communities on earth, but their genomes are generally very large, with many redundant genes, making whole genome sequencing of ferns prohibitively expensive and time-consuming. This means there is a significant lack of fern reference genomes, making molecular biology research difficult. The gametophytes of ferns can survive independently, are responsible for sexual reproduction and the feeding of young sporophytes, and play an important role in the alternation of generations. For this study, we selected Adiantum flabellulatum as it has both ornamental and medicinal value and is also an indicator plant of acidic soil. The full-length transcriptome sequencing of its gametophytes was carried out using PacBio three-generation sequencing technology. A total of 354,228 transcripts were obtained, and 231,705 coding sequences (CDSs) were predicted, including 5,749 transcription factors (TFs), 2,214 transcription regulators (TRs) and 4,950 protein kinases (PKs). The transcripts annotated by non-redundant protein sequence database (NR), Kyoto encyclopedia of genes and genomes (KEGG), eukaryotic ortholog groups (KOG), Swissprot, protein family (Pfma), nucleotide sequence database (NT) and gene ontology (GO) were 251,501, 197,474, 193,630, 194,639, 195,956, 113,069 and 197,883, respectively. In addition, 138,995 simple sequence repeats (SSRs) and 111,793 long non-coding RNAs (lncRNAs) were obtained. We selected nine chlorophyll synthase genes for qRT-PCR, and the results showed that the full-length transcript sequences and the annotation information were reliable. This study can provide a reference gene set for subsequent gene expression quantification.


Subject(s)
Adiantum , Transcriptome , Transcriptome/genetics , Adiantum/genetics , Molecular Sequence Annotation , Germ Cells, Plant/metabolism , Gene Expression Profiling/methods
8.
Plant Physiol ; 189(1): 165-177, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35134233

ABSTRACT

ROOT MERISTEM GROWTH FACTORs (RGFs), a group of peptide hormones, play key roles in root apical meristem development. In Arabidopsis (Arabidopsis thaliana), there are 11 members of RGFs, in which at least RGF1, RGF2, and RGF3 are expressed at the root tip and are involved in root stem cell niche maintenance. RGFs are perceived by five functionally redundant receptor-like protein kinases, RGF1 INSENSITIVE 1 (RGI1) to RGI5, to maintain the expression of two downstream APETALA 2 (AP2) transcription factor genes, PLETHORA 1 (PLT1) and PLT2, and to stabilize PLT2. RGI1 to RGI3 were also named RGF RECEPTOR 1 (RGFR1) to RGFR3, respectively. Although previous studies have suggested that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and its paralogs, SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASEs (SERKs), may act as coreceptors of RGIs, comprehensive genetic and biochemical analyses have not been well documented. Here, we report that single, double, and triple mutants of SERKs show various degrees of short root phenotypes and insensitivity to exogenously applied RGF1. The interaction between RGIs and BAK1 and their mutual phosphorylation are RGF1 dependent. We also found that RGF1-induced MAPK activation relies on both RGIs and SERKs. We demonstrate that RGIs play redundant roles in regulating root apical meristem development. Therefore, we genetically and biochemically substantiated that SERKs, as coreceptors, play essential roles in the RGF1-mediated signaling pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Meristem/metabolism , Plant Roots/metabolism , Signal Transduction
9.
Front Plant Sci ; 13: 1069191, 2022.
Article in English | MEDLINE | ID: mdl-36618667

ABSTRACT

Phosphorus (P) is an essential macronutrient element for plant growth, and deficiency of inorganic phosphate (Pi) limits plant growth and yield. Elephant grass (Pennisetum purpureum) is an important fodder crop cultivated widely in tropical and subtropical areas throughout the world. However, the mechanisms underlying efficient P use in elephant grass under Pi deficiency remain poorly understood. In this study, the physiological and molecular responses of elephant grass leaves and roots to Pi deficiency were investigated. The results showed that dry weight, total P concentration, and P content decreased in Pi-deprived plants, but that acid phosphatase activity and P utilization efficiency (PUE) were higher than in Pi-sufficient plants. Regarding Pi starvation-responsive (PSR) genes, transcriptomics showed that 59 unigenes involved in Pi acquisition and transport (especially 18 purple acid phosphatase and 27 phosphate transporter 1 unigenes) and 51 phospholipase unigenes involved in phospholipids degradation or Pi-free lipids biosynthesis, as well as 47 core unigenes involved in the synthesis of phenylpropanoids and flavonoids, were significantly up-regulated by Pi deprivation in leaves or roots. Furthermore, 43 unigenes related to Pi-independent- or inorganic pyrophosphate (PPi)-dependent bypass reactions were markedly up-regulated in Pi-deficient leaves, especially five UDP-glucose pyrophosphorylase and 15 phosphoenolpyruvate carboxylase unigenes. Consistent with PSR unigene expression changes, metabolomics revealed that Pi deficiency significantly increased metabolites of Pi-free lipids, phenylpropanoids, and flavonoids in leaves and roots, but decreased phospholipid metabolites. This study reveals the mechanisms underlying the responses to Pi starvation in elephant grass leaves and roots, which provides candidate unigenes involved in efficient P use and theoretical references for the development of P-efficient elephant grass varieties.

10.
Mol Plant ; 12(7): 984-1002, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31059824

ABSTRACT

During embryo development, the vascular precursors and ground tissue stem cells divide to renew themselves and produce the vascular tissue, endodermal cells, and cortical cells. However, the molecular mechanisms regulating division of these stem cells have remained largely elusive. In this study, we show that loss of function of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) genes results in aberrant embryo development. Fewer cortical, endodermal, and vascular cells are generated in the embryos of serk1 serk2 bak1 triple mutants. WUSCHEL-RELATED HOMEOBOX 5 (WOX5) is ectopically expressed in vascular cells of serk1 serk2 bak1 embryos. The first transverse division of vascular precursors in mid-globular embryos and second asymmetric division of ground tissue stem cells in early-heart embryos are abnormally altered to a longitudinal division. The embryo defects can be partially rescued by constitutively activated mitogen-activated protein kinase (MAPK) kinase kinase YODA (YDA) and MAPK kinase MKK5. Taken together, our results reveal that SERK-mediated signals regulate division patterns of vascular precursors and ground tissue stem cells, likely via the YDA-MKK4/5 cascade, during embryo development.


Subject(s)
Arabidopsis Proteins/metabolism , Plant Somatic Embryogenesis Techniques , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/embryology , Arabidopsis Proteins/genetics , Cloning, Molecular , DNA Mutational Analysis , Gene Expression Regulation, Plant , Homeodomain Proteins/metabolism , MAP Kinase Kinase Kinase 5/genetics , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation , Organogenesis, Plant , Plant Development , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...