Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; : e0013224, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864639

ABSTRACT

Klebsiella pneumoniae species complex members, particularly K. pnemoniae sensu stricto, are common bovine clinical mastitis pathogens and often the cause of hospital- and community-acquired infections in humans. Here, we present 148 draft genome assemblies and annotations of K. pneumoniae species complex members from bovine and human hosts in Canada.

2.
Microbiol Resour Announc ; 13(6): e0098923, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38682774

ABSTRACT

Salmonella enterica is the etiological agent responsible for salmonellosis. Here, we report the draft whole genome sequences of 13 S. enterica subsp. enterica isolates from chickens and cows, as well as from previous Canadian Salmonella outbreaks investigated by the Canadian Food Inspection Agency.

3.
FEMS Microbiol Lett ; 366(6)2019 03 01.
Article in English | MEDLINE | ID: mdl-30980671

ABSTRACT

This study analyzed the microbiological quality of drinking and source water from three First Nations communities in Manitoba, Canada that vary with respect to the source, storage and distribution of drinking water. Community A relies on an aquifer and Community B on a lake as source water to their water treatment plants. Community C does not have a water treatment plant and uses well water. Quantification of free residual chlorine and fecal bacterial (E. coli and coliforms), as well as detection of antibiotic resistance genes (sul, ampC, tet(A), mecA, vanA, blaSHV, blaTEM, blaCTX-M, blaOXA-1, blaCYM-2, blaKPC, blaOXA-48, blaNDM, blaVIM, blaGES and blaIMP) was carried out. While water treatment plants were found to be working properly, as post-treatment water did not contain E. coli or coliforms, once water entered the distribution system, a decline in the chlorine concentration with a concomitant increase in bacterial counts was observed. In particular, water samples from cisterns not only contained high number of E. coli and coliforms, but were also found to contain antibiotic resistance genes. This work shows that proper maintenance of the distribution and storage systems in First Nations communities is essential in order to provide access to clean and safe drinking water.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Drinking Water/microbiology , Drug Resistance, Bacterial , Bacteria/classification , Bacteria/isolation & purification , Bacterial Proteins/genetics , Feces/microbiology , Lakes/microbiology , Manitoba , Water Microbiology , Water Pollution/analysis , Water Purification
4.
Front Microbiol ; 7: 265, 2016.
Article in English | MEDLINE | ID: mdl-27014197

ABSTRACT

In recent years, porcine epidemic diarrhea virus (PEDv) has caused major epidemics, which has been a burden to North America's swine industry. Low infectious dose and high viability in the environment are major challenges in eradication of this virus. To further understand the viability of PEDv in the infected manure, we longitudinally monitored survivability and infectivity of PEDv in two open earthen manure storages (EMS; previously referred to as lagoon) from two different infected swine farms identified in the province of Manitoba, Canada. Our study revealed that PEDv could survive up to 9 months in the infected EMS after the initial outbreak in the farm. The viral load varied among different layers of the EMS with an average of 1.1 × 10(5) copies/ml of EMS, independent of EMS temperature and pH. In both studied EMS, the evidence of viral replication was observed through increased viral load in the later weeks of the samplings while there was no new influx of infected manure into the EMS, which was suggestive of presence of potential alternative hosts for PEDv within the EMS. Decreasing infectivity of virus over time irrespective of increased viral load suggested the possibility of PEDv evolution within the EMS and perhaps in the new host that negatively impacted virus infectivity. Viral load in the top layer of the EMS was low and mostly non-infective suggesting that environmental factors, such as UV and sunlight, could diminish the replicability and infectivity of the virus. Thus, frequent agitation of the EMS that could expose virus to UV and sunlight might be a potential strategy for reduction of PEDv load and infectivity in the infected EMS.

SELECTION OF CITATIONS
SEARCH DETAIL
...