Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics ; 23(7-8): e2200031, 2023 04.
Article in English | MEDLINE | ID: mdl-36086888

ABSTRACT

Proteomic data are a uniquely valuable resource for drug response prediction and biomarker discovery because most drugs interact directly with proteins in target cells rather than with DNA or RNA. Recent advances in mass spectrometry and associated processing methods have enabled the generation of large-scale proteomic datasets. Here we review the significant opportunities that currently exist to combine large-scale proteomic data with drug-related research, a field termed pharmacoproteomics. We describe successful applications of drug response prediction using molecular data, with an emphasis on oncology. We focus on technical advances in data-independent acquisition mass spectrometry (DIA-MS) that can facilitate the discovery of protein biomarkers for drug responses, alongside the increased availability of big biomedical data. We spotlight new opportunities for machine learning in pharmacoproteomics, driven by the combination of these large datasets and improved high-performance computing. Finally, we explore the value of pre-clinical models for pharmacoproteomic studies and the accompanying challenges of clinical validation. We propose that pharmacoproteomics offers the potential for novel discovery and innovation within the cancer landscape.


Subject(s)
Neoplasms , Proteomics , Humans , Proteomics/methods , Biomarkers/analysis , Mass Spectrometry/methods , Proteins , Neoplasms/drug therapy
2.
Cancer Cell ; 40(8): 835-849.e8, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35839778

ABSTRACT

The proteome provides unique insights into disease biology beyond the genome and transcriptome. A lack of large proteomic datasets has restricted the identification of new cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types are analyzed by mass spectrometry. Deploying a workflow to quantify 8,498 proteins, these data capture evidence of cell-type and post-transcriptional modifications. Integrating multi-omics, drug response, and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipeline reveals thousands of protein biomarkers of cancer vulnerabilities that are not significant at the transcript level. The power of the proteome to predict drug response is very similar to that of the transcriptome. Further, random downsampling to only 1,500 proteins has limited impact on predictive power, consistent with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-DepMapSanger) is a comprehensive resource available at https://cellmodelpassports.sanger.ac.uk.


Subject(s)
Neoplasms , Proteomics , Biomarkers, Tumor/genetics , Cell Line , Humans , Neoplasms/genetics , Proteome/metabolism , Proteomics/methods
3.
iScience ; 25(2): 103798, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35169688

ABSTRACT

Multi-omics data analysis is an important aspect of cancer molecular biology studies and has led to ground-breaking discoveries. Many efforts have been made to develop machine learning methods that automatically integrate omics data. Here, we review machine learning tools categorized as either general-purpose or task-specific, covering both supervised and unsupervised learning for integrative analysis of multi-omics data. We benchmark the performance of five machine learning approaches using data from the Cancer Cell Line Encyclopedia, reporting accuracy on cancer type classification and mean absolute error on drug response prediction, and evaluating runtime efficiency. This review provides recommendations to researchers regarding suitable machine learning method selection for their specific applications. It should also promote the development of novel machine learning methodologies for data integration, which will be essential for drug discovery, clinical trial design, and personalized treatments.

4.
Anal Chem ; 86(22): 11362-7, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25301220

ABSTRACT

This study introduced a barcode-like design into a paper-based blood typing device by integrating with smartphone-based technology. The concept of presenting a paper-based blood typing assay in a barcode-like pattern significantly enhanced the adaptability of the assay to the smartphone technology. The fabrication of this device involved the use of a printing technique to define hydrophilic bar channels which were, respectively, treated with Anti-A, -B, and -D antibodies. These channels were then used to perform blood typing assays by introducing a blood sample. Blood type can be visually identified from eluting lengths in bar channels. A smartphone-based analytical application was designed to read the bar channels, analogous to scanning a barcode, interpret this information, and then report results to users. The proposed paper-based blood typing device is rapidly read by smartphones and easy for the user to operate. We envisage that the adaptation of paper-based devices to the widely accepted smartphone technology will increase the capability of paper-based diagnostics with rapid assay result interpretation, data storage, and transmission.


Subject(s)
Blood Grouping and Crossmatching/methods , Cell Phone , Electronic Data Processing , Paper , Cell Phone/instrumentation , Electronic Data Processing/instrumentation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...