Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Parasitol Res ; 121(5): 1369-1378, 2022 May.
Article in English | MEDLINE | ID: mdl-35320836

ABSTRACT

The parasitic nematode Trichinella has a special relationship with its host as it has a unique intracellular location within the feeder cell which is a structure derived from skeletal muscle fiber. It has been proposed that "parakines" secreted by Trichinella larvae serve as messengers to implement communication between the parasite and the muscle cells through a molecular cross-talk to ensure permanent coexistence within the host. The Ts-NBL1 protein is considered to be a potential key "parakine" involved in the early invasion of the muscle fiber and its transformation into a feeder cell during Trichinella spiralis infection. This study used for the first time yeast two-hybrid (Y2H) technology in Trichinella to identify Ts-NBL1 interacting proteins. GST co-affinity purification experiments confirmed vimentin as an important interactor. The discovery of the new host proteins interacting with Ts-NBL1 will help to suggest that Ts-NBL1 contributes to participate in the capsule formation of feeder cells and provide ideas for understanding the molecular and cellular mechanisms involved in the survival of Trichinella in the host.


Subject(s)
Trichinella spiralis , Trichinellosis , Animals , Helminth Proteins/genetics , Helminth Proteins/metabolism , Larva/metabolism , Muscle Cells , Trichinella spiralis/metabolism , Trichinellosis/parasitology , Vimentin/metabolism
2.
Transbound Emerg Dis ; 65(2): e251-e263, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29243405

ABSTRACT

Bluetongue virus (BTV) hitherto consisted of 26 recognized serotypes, of which all except BTV-26 are primarily transmitted by certain species of Culicoides biting midges. Three variants of an additional 27th bluetongue virus serotype (BTV-27v01-v03) were recently detected in asymptomatic goats in Corsica, France, 2014-2015. Molecular characterization revealed genetic differences between the three variants. Therefore, in vivo characteristics were investigated by experimental infection of a total of 15 goats, 11 sheep and 4 cattle with any one of the three variants in separated animal trials. In goat trials, BTV-naïve animals of the same species were kept in a facility where direct contact was unhindered. Of the 15 inoculated goats, 13 and 14 animals were found positive for BTV-RNA and antibodies (Ab), respectively, until the end of the experiments. Surprisingly, BTV-Ab levels as measured with ELISA and neutralization test (SNT) were remarkably low in all seropositive goats. Virus isolation from whole-blood was possible at the peak of viremia until 49 dpi. Moreover, detection of BTV-27v02-RNA and Ab in one contact goat indicated that-similar to BTV-26-at least one of three BTV-27 variants may be transmitted by contact between goats. In the field, BTV-27 RNA can be detected up to 6 months in the whole-blood of BTV-27-infected Corsican goats. In contrast, BTV RNA was not detected in the blood of cattle or sheep. In addition, BTV-27 Abs were not detected in cattle and only a transient increase in Ab levels was observed in some sheep. None of the 30 animals showed obvious BT-like clinical signs. In summary, the phenotypes observed for BTV-27v01-v03 phenotypes correspond to a mixture of characteristics known for BTV-25 and 26.


Subject(s)
Antibodies, Viral/blood , Bluetongue virus/physiology , Bluetongue/transmission , Cattle Diseases/virology , Ceratopogonidae/virology , Goat Diseases/virology , Animals , Asymptomatic Diseases , Bluetongue/virology , Bluetongue virus/immunology , Bluetongue virus/isolation & purification , Bluetongue virus/pathogenicity , Cattle , Cattle Diseases/transmission , Enzyme-Linked Immunosorbent Assay/veterinary , France , Goat Diseases/transmission , Goats , Male , Neutralization Tests/veterinary , Phenotype , Serogroup , Sheep
3.
Transbound Emerg Dis ; 64(3): 998-1000, 2017 Jun.
Article in English | MEDLINE | ID: mdl-26617414

ABSTRACT

At the end of August 2015, a ram located in central France (department of Allier) showed clinical signs suggestive of BTV (Bluetongue virus) infection. However, none of the other animals located in the herd showed any signs of the Bluetongue disease. Laboratory analyses identified the virus as BTV serotype 8. The viro and sero prevalence intraherd were 2.4% and 8.6% in sheep and 18.3% and 42.9% in cattle, respectively. Phylogenetic studies showed that the sequences of this strain are closely related to another BTV-8 strain that has circulated in France in 2006-2008. The origin of the outbreak is unclear but it may be assumed that the BTV-8 has probably circulated at very low prevalence (possibly in livestock or wildlife) since its first emergence in 2007-2008.


Subject(s)
Bluetongue virus/classification , Bluetongue/virology , Cattle Diseases/virology , Communicable Diseases, Emerging/veterinary , Animals , Bluetongue/epidemiology , Cattle , Cattle Diseases/epidemiology , Chick Embryo , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Cricetinae , Disease Outbreaks/veterinary , France/epidemiology , Male , Mice , Mice, Knockout , Phylogeny , Prevalence , Serogroup , Sheep
4.
Sci Rep ; 5: 9219, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25783199

ABSTRACT

The T cell specific adapter protein (TSAd) is expressed in activated T cells and NK cells. While TSAd is beginning to emerge as a critical regulator of Lck and Itk activity in T cells, its role in NK cells has not yet been explored. Here we have examined susceptibility to virus infections in a murine model using various viral infection models. We report that TSAd-deficient mice display reduced clearance of murine cytomegalovirus (MCMV) that lack the viral MHC class I homologue m157, which is critical for Ly49H-mediated NK cell recognition of infected cells. In this infection model, NK cells contribute in the early stages of the disease, whereas CD8+ T cells are critical for viral clearance. We found that mice infected with MCMV Δm157 displayed reduced viral clearance in the spleen as well as reduced proliferation in spleen NK cells and CD8+ T cells in the absence of TSAd. Though no other immunophenotype was detected in the infection models tested, these data suggests that in the absence of the Ly49H ligand activation, NK cell and CD8+ T cell responses may be compromised in TSAd-deficient mice.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Muromegalovirus/genetics , Viral Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , CD11b Antigen/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Cell Proliferation , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/veterinary , Cytomegalovirus Infections/virology , Disease Models, Animal , Flow Cytometry , Genotype , Humans , Immunophenotyping , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/physiology , Mutation , Spleen/cytology , Spleen/immunology , Spleen/virology , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Viral Load , Virus Replication
5.
Nucleic Acids Res ; 38(Database issue): D371-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20007148

ABSTRACT

Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such 'ORFeome' resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway(R) system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Databases, Protein , Genes, Viral , Open Reading Frames , Cloning, Molecular , Computational Biology/trends , Genetic Techniques , Genome, Viral , Information Storage and Retrieval/methods , Internet , Protein Structure, Tertiary , Software , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL