Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 14(5): 752-765, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38227896

ABSTRACT

A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA. Cancer cell TREX1 expression is coordinately induced with STING by autocrine IFN and downstream STAT1, preventing signal amplification. TREX1 inactivation in cancer cells thus unleashes STING-IFN signaling, recruiting T and natural killer (NK) cells, sensitizing to NK cell-derived IFNγ, and cooperating with programmed cell death protein 1 blockade in multiple mouse tumor models to enhance immunogenicity. Targeting TREX1 may represent a complementary strategy to induce cytosolic DNA and amplify cancer cell STING-IFN signaling as a means to sensitize tumors to immune checkpoint blockade (ICB) and/or cell therapies. SIGNIFICANCE: STING-IFN signaling in cancer cells promotes tumor cell immunogenicity. Inactivation of the DNA exonuclease TREX1, which is adaptively upregulated to limit pathway activation in cancer cells, recruits immune effector cells and primes NK cell-mediated killing. Targeting TREX1 has substantial therapeutic potential to amplify cancer cell immunogenicity and overcome ICB resistance. This article is featured in Selected Articles from This Issue, p. 695.


Subject(s)
Exodeoxyribonucleases , Membrane Proteins , Phosphoproteins , Signal Transduction , Exodeoxyribonucleases/genetics , Mice , Phosphoproteins/metabolism , Phosphoproteins/genetics , Humans , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/drug therapy , Interferons/metabolism , Cell Line, Tumor , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism
2.
Int J Parasitol ; 54(1): 47-53, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37586585

ABSTRACT

Haemonchus contortus is one of the most pathogenic nematodes affecting small ruminants globally and is responsible for large economic losses in the sheep and goat industry. Anthelmintic resistance is rampant in this parasite and thus parasite control programs must account for drug efficacy on individual farms and, sometimes, whether H. contortus is the most prevalent trichostrongylid. Historically, coproculture has been the main way to determine the prevalence of H. contortus in faecal samples due to the inability to morphologically differentiate between trichostrongylid egg types, but this process requires a skilled technician and takes multiple days to complete. Fluoresceinated peanut agglutinin (PNA) has been shown to specifically bind H. contortus and thus differentiate eggs based on whether they fluoresce, but this method has not been widely adopted. The ParasightTM System (PS) fluorescently stains helminth eggs in order to identify and quantify them, and the H. contortus PNA staining method was therefore adapted to this platform using methodology requiring only 20 min to obtain results. In this study, 74 fecal samples were collected from sheep and analyzed for PNA-stained H. contortus, using both PS and manual fluorescence microscopy. The percentage of H. contortus was determined based on standard total strongylid counts with PS or brightfield microscopy. Additionally, 15 samples were processed for coproculture with larval identification, and analyzed with both manual and automated PNA methods. All methods were compared using the coefficient of determination (R2) and the Lin's concordance correlation coefficient (ρc). ParasightTM and manual PNA percent H. contortus results were highly correlated with R2 = 0.8436 and ρc = 0.9100 for all 74 fecal samples. Coproculture versus PS percent H. contortus were also highly correlated with R2 = 0.8245 and ρc = 0.8605. Overall, this system provides a rapid and convenient method for determining the percentage of H. contortus in sheep and goat fecal samples without requiring specialized training.


Subject(s)
Anthelmintics , Goat Diseases , Haemonchiasis , Haemonchus , Sheep Diseases , Animals , Sheep , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Sheep Diseases/parasitology , Parasite Egg Count/veterinary , Ovum , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Feces/parasitology , Goats , Goat Diseases/epidemiology , Goat Diseases/drug therapy
3.
Parasitol Res ; 123(1): 56, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38105374

ABSTRACT

The microbiome plays an important role in health, where changes in microbiota composition can have significant downstream effects within the host, and host-microbiota relationships can be exploited to affect health outcomes. Parasitic helminths affect animals globally, but an exploration of their microbiota has been limited, despite the development of anti-Wolbachia drugs to help control infections with some filarial nematodes. The equine ascarids, Parascaris spp., are considered the most pathogenic nematodes affecting juvenile horses and are also the only ascarid parasite to have developed widespread anthelmintic resistance. The aim of this study was to characterize the microbiota of this helminth, focusing on the female gonad, determine a core microbiota for this organ, identify bacterial species, and show bacterial localization to the female gonad via in situ hybridization (ISH). A total of 22 gonads were isolated from female Parascaris spp. collected from three foals, and 9 female parasites were formalin-fixed and paraffin-embedded for ISH. Next-generation sequencing was performed using V3-V4 primers as well as the Swift Amplicon™ 16S+ ITS Panel. Overall, ten genera were identified as members of the Parascaris spp. female gonad and twelve bacterial species were identified. The most prevalent genus was Mycoplasma, followed by Reyranella, and there were no differences in alpha diversity between parasites from different horses. Specific eubacteria staining was identified in both the intestine and within the gonad using ISH. Overall, this study provided in-depth information regarding the female Parascaris spp. microbiota and was the first to identify the core microbiota within a specific parasite organ.


Subject(s)
Ascaridida Infections , Ascaridoidea , Helminths , Horse Diseases , Parasites , Animals , Horses , Female , Ascaridoidea/genetics , Horse Diseases/parasitology , Ascaridida Infections/veterinary , Ascaridida Infections/parasitology , Drug Resistance , Feces/parasitology , Gonads
4.
Parasit Vectors ; 15(1): 408, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36333754

ABSTRACT

BACKGROUND: Parasitic nematodes, including large roundworms colloquially known as ascarids, affect the health and well-being of livestock animals worldwide. The equine ascarids, Parascaris spp., are important parasites of juvenile horses and the first ascarids to develop widespread anthelmintic resistance. The microbiota has been shown to be an important factor in the fitness of many organisms, including parasitic nematodes, where endosymbiotic Wolbachia have been exploited for treatment of filariasis in humans. METHODS: This study used short-read 16S rRNA sequences and Illumina sequencing to characterize and compare microbiota of whole worm small intestinal stages and microbiota of male and female intestines and gonads. Diversity metrics including alpha and beta diversity, and the differential abundance analyses DESeq2, ANCOM-BC, corncob, and metagenomeSeq were used for comparisons. RESULTS: Alpha and beta diversity of whole worm microbiota did not differ significantly between groups, but Simpson alpha diversity was significantly different between female intestine (FI) and male gonad (MG) (P= 0.0018), and Shannon alpha diversity was significantly different between female and male gonads (P = 0.0130), FI and horse jejunum (HJ) (P = 0.0383), and FI and MG (P= 0.0001). Beta diversity (Fig. 2B) was significantly different between female and male gonads (P = 0.0006), male intestine (MI) and FG (P = 0.0093), and MG and FI (P = 0.0041). When comparing organs, Veillonella was differentially abundant for DESeq2 and ANCOM-BC (p < 0.0001), corncob (P = 0.0008), and metagenomeSeq (P = 0.0118), and Sarcina was differentially abundant across four methods (P < 0.0001). Finally, the microbiota of all individual Parascaris spp. specimens were compared to establish shared microbiota between groups. CONCLUSIONS: Overall, this study provided important information regarding the Parascaris spp. microbiota and provides a first step towards determining whether the microbiota may be a viable target for future parasite control options.


Subject(s)
Ascaridida Infections , Ascaridoidea , Horse Diseases , Microbiota , Humans , Horses , Animals , Female , Male , Ascaridoidea/genetics , Ascaridida Infections/veterinary , RNA, Ribosomal, 16S/genetics , Horse Diseases/parasitology , Feces/parasitology
5.
Parasitol Res ; 121(10): 2775-2791, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35986167

ABSTRACT

The equine ascarids, Parascaris spp., are important nematode parasites of juvenile horses and were historically model organisms in the field of cell biology, leading to many important discoveries, and are used for the study of chromatin diminution. In veterinary parasitology, Parascaris spp. are important not only because they can cause clinical disease in young horses but also because they are the only ascarid parasites to have developed widespread anthelmintic resistance. Despite this, much of the general biology and mechanisms of anthelmintic resistance are poorly understood. This review condenses known basic biological information and knowledge on the mechanisms of anthelmintic resistance in Parascaris spp., highlighting the importance of foundational research programs. Although two variants of this parasite were recognized based on the number of chromosomes in the 1870s and suggested to be two species in 1890, one of these, P. univalens, appears to have been largely forgotten in the veterinary scientific literature over the past 100 years. We describe how this omission has had a century-long effect on nomenclature and data analysis in the field, highlighting the importance of proper specimen identification in public repositories. A summary of important basic biology, including life cycle, in vitro maintenance, and immunology, is given, and areas of future research for the improvement of knowledge and development of new systems are given. Finally, the limited knowledge regarding anthelmintic resistance in Parascaris spp. is summarized, along with caution regarding assumptions that resistance mechanisms can be applied across clades.


Subject(s)
Anthelmintics , Ascaridida Infections , Ascaridoidea , Horse Diseases , Animals , Anthelmintics/therapeutic use , Ascaridida Infections/veterinary , Ascaridoidea/genetics , Drug Resistance , Horse Diseases/parasitology , Horses
6.
Parasitol Res ; 120(4): 1363-1370, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33527172

ABSTRACT

Fecal egg counts (FECs) are essential for veterinary parasite control programs. Recent advances led to the creation of an automated FEC system that performs with increased precision and reduces the need for training of analysts. However, the variability contributed by analysts has not been quantified for FEC methods, nor has the impact of training on analyst performance been quantified. In this study, three untrained analysts performed FECs on the same slides using the modified McMaster (MM), modified Wisconsin (MW), and the automated system with two different algorithms: particle shape analysis (PSA) and machine learning (ML). Samples were screened and separated into negative (no strongylid eggs seen), 1-200 eggs per gram of feces (EPG), 201-500 EPG, 501-1000 EPG, and 1001+ EPG levels, and ten repeated counts were performed for each level and method. Analysts were then formally trained and repeated the study protocol. Between analyst variability (BV), analyst precision (AP), and the proportion of variance contributed by analysts were calculated. Total BV was significantly lower for MM post-training (p = 0.0105). Additionally, AP variability and analyst variance both tended to decrease for the manual MM and MW methods. Overall, MM had the lowest BV both pre- and post-training, although PSA and ML were minimally affected by analyst training. This research illustrates not only how the automated methods could be useful when formal training is unavailable but also how impactful formal training is for traditional manual FEC methods.


Subject(s)
Feces/parasitology , Parasite Egg Count/veterinary , Algorithms , Animals , Automation, Laboratory , Education , Horses/parasitology , Humans , Machine Learning , Observer Variation , Parasite Egg Count/methods , Parasite Egg Count/standards
7.
Vet Parasitol ; 284: 109199, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32801106

ABSTRACT

Fecal egg counts are the cornerstone of equine parasite control programs. Previous work led to the development of an automated, image-analysis-based parasite egg counting system. The system has been further developed to include an automated reagent dispenser unit and a custom camera (CC) unit that generates higher resolution images, as well as a particle shape analysis (PSA) algorithm and machine learning (ML) algorithm. The first aim of this study was to conduct a comprehensive comparison of method precision between the original smartphone (SP) unit with the PSA algorithm, CC/PSA, CC/ML, and the traditional McMaster (MM) and Wisconsin (MW) manual techniques. Additionally, a Bayesian analysis was performed to estimate and compare sensitivity and specificity of all five methods. Feces were collected from horses, screened with triplicate Mini-FLOTAC counts, and placed into five categories: negative (no eggs seen), > 0 - ≤ 200 eggs per gram (EPG), > 200 - ≤ 500 EPG, > 500 - ≤ 1000 EPG, and > 1000 EPG. Ten replicates per horse were analyzed for each technique. Technical variability for samples > 200 EPG was significantly higher for MM than CC/PSA and CC/ML (p <  0.0001). Biological variability for samples> 0 was numerically highest for CC/PSA, but with samples > 200 EPG, MM had a significantly lower CV than MW (p =  0.001), MW had a significantly lower CV than CC/PSA (p <  0.0001), CC/ML had a significantly lower CV than both MW and SP/PSA (p <  0.0001, p =  0.0003), and CC/PSA had a significantly lower CV than CC/SP (p =  0.0115). Sensitivity was> 98 % for all five methods with no significant differences. Specificity, however, was significantly the highest for CC/PSA, followed numerically by SP/PSA, MM, CC/ML, and finally MW. Overall, the automated counting system is a promising new development in equine parasitology. Continued refinement to the counting algorithms will help improve precision and specificity, while additional research in areas such as egg loss, analyst variability at the counting step, and accuracy will help create a complete picture of its impact as a new fecal egg count method.


Subject(s)
Parasite Egg Count/veterinary , Strongyle Infections, Equine/diagnosis , Strongyle Infections, Equine/parasitology , Animals , Feces/parasitology , Horses , Parasite Egg Count/instrumentation , Parasite Egg Count/standards , Sensitivity and Specificity , Smartphone
8.
PLoS One ; 15(3): e0229445, 2020.
Article in English | MEDLINE | ID: mdl-32160239

ABSTRACT

The Wnt/ß-catenin signaling pathway has been implicated in human proliferative diseases such as cancer and fibrosis. The functions of ß-catenin and several other components of this pathway have been investigated in fibrosis. However, the potential role of R-spondin proteins (RSPOs), enhancers of the Wnt/ß-catenin signaling, has not been described. A specific interventional strategy targeting this pathway for fibrosis remains to be defined. We developed monoclonal antibodies against members of the RSPO family (RSPO1, 2, and 3) and probed their potential function in fibrosis in vivo. We demonstrated that RSPO3 plays a critical role in the development of fibrosis in multiple organs. Specifically, an anti-RSPO3 antibody, OMP-131R10, when dosed therapeutically, attenuated fibrosis in carbon tetrachloride (CCl4)-induced liver fibrosis, bleomycin-induced pulmonary and skin fibrosis models. Mechanistically, we showed that RSPO3 induces multiple pro-fibrotic chemokines and cytokines in Kupffer cells and hepatocytes. We found that the anti-fibrotic activity of OMP-131R10 is associated with its inhibition of ß-catenin activation in vivo. Finally, RSPO3 was found to be highly elevated in the active lesions of fibrotic tissues in mouse models of fibrosis and in patients with idiopathic pulmonary fibrosis (IPF) and nonalcoholic steatohepatitis (NASH). Together these data provide an anti-fibrotic strategy for targeting the Wnt/ß-catenin pathway through RSPO3 blockade and support that OMP-131R10 could be an important therapeutic agent for fibrosis.


Subject(s)
Antibodies/therapeutic use , Idiopathic Pulmonary Fibrosis , Non-alcoholic Fatty Liver Disease , Thrombospondins/physiology , Animals , Cells, Cultured , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Male , Mice , Mice, Inbred DBA , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Wnt Signaling Pathway/drug effects
9.
Parasitol Res ; 118(10): 2877-2883, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31422463

ABSTRACT

Anthelmintic resistance in equine cyathostomin parasites is widespread. A surveillance-based parasite control program using fecal egg counts (FECs) and fecal egg count reduction tests (FECRTs) to decrease anthelmintic use and monitor treatment efficacy is recommended. The purpose of this study was to examine shifts in equine parasite control program management practices via a short course presented by the Penn State Extension, and to highlight how data collected from these programs is useful for monitoring anthelmintic efficacy on a large scale. Horse owners were enrolled after participating in a short course and filled out questionnaire surveys about their parasite management programs pre and post study, horse information, and farm information. FECs were performed at three time points, and horses above a 300 strongyle eggs per gram cut-off were treated with pyrantel pamoate, fenbendazole, or ivermectin. Two weeks post-treatment, FECRTs were performed to determine treatment efficacy, which included 29 farms with 513 individual treatments. Prior to the study, only 30.6% of farms used FECs, but after the study, 97.3% of farms said they would use FECs in the future. Horses were given an average of 4.1 anthelmintic treatments per year before the study, and post study 89.2% of farms were able to reduce the number of anthelmintic treatments used. Fenbendazole was effective on zero farms, pyrantel pamoate on 7.4% of farms, and ivermectin on 92.9% of farms. This outreach project helped generate information about anthelmintic efficacy levels, causing a shift in practices on participating farms, and collected useful anthelmintic resistance data.


Subject(s)
Antinematodal Agents/therapeutic use , Fenbendazole/therapeutic use , Horse Diseases/epidemiology , Ivermectin/therapeutic use , Parasite Egg Count/veterinary , Pyrantel Pamoate/therapeutic use , Animals , Drug Resistance/drug effects , Farms , Feces/parasitology , Horse Diseases/drug therapy , Horse Diseases/parasitology , Horses , Surveys and Questionnaires
10.
Vet Parasitol Reg Stud Reports ; 13: 14-17, 2018 08.
Article in English | MEDLINE | ID: mdl-31014862

ABSTRACT

Approximately 700 feral horses, dubbed "trespass horses" by the United States Army, occupy Fort Polk, Louisiana and the surrounding Kisatchie National Forest. These horses are considered a nuisance and hazard, and the military is seeking to remove the horses via adoption. The aim of this research was to evaluate the fecal egg count (FEC), body condition score (BCS), and the presence of Strongylus vulgaris within this previously unstudied horse population prior to removal. The feral horse data was compared to domestic horses living on a single farm in the same area. A modified McMaster FEC, Henneke body scoring via photography, and PCR were used to evaluate 10 domestic horses and 28 feral horses. A significantly higher FEC was identified for feral horses when compared to domestic horses (p = 0.004), and 69.2% of feral horses were positive for S. vulgaris while all domestic horses tested negative. Additionally, no correlation was found between FEC and BCS for domestic (p = 0.213) or feral (p = 0.099) horses, and no association was found between FEC and S. vulgaris presence (p = 0.21) or BCS and S. vulgaris presence (p = 0.52). This study provides insight into S. vulgaris and strongyle prevalence in a previously unstudied group of horses and indicates a need for anthelmintic treatment and monitoring of the feral horses once they are adopted.


Subject(s)
Animals, Wild/parasitology , Horses/parasitology , Parasite Egg Count/veterinary , Strongylus/isolation & purification , Animals , Feces/parasitology , Female , Louisiana/epidemiology , Male , Strongyle Infections, Equine/epidemiology , Strongyle Infections, Equine/parasitology
11.
Sci Rep ; 7(1): 15270, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127379

ABSTRACT

Activating mutations in the Wnt pathway are a characteristic feature of colorectal cancer (CRC). The R-spondin (RSPO) family is a group of secreted proteins that enhance Wnt signaling and RSPO2 and RSPO3 gene fusions have been reported in CRC. We have previously shown that Wnt pathway blockers exhibit potent combinatorial activity with taxanes to inhibit tumor growth. Here we show that RSPO3 antagonism synergizes with paclitaxel based chemotherapies in patient-derived xenograft models (PDX) with RSPO3 fusions and in tumors with common CRC mutations such as APC, ß-catenin, or RNF43. In these latter types of tumors that represent over 90% of CRC, RSPO3 is produced by stromal cells in the tumor microenvironment and the activating mutations appear to sensitize the tumors to Wnt-Rspo synergy. The combination of RSPO3 inhibition and taxane treatment provides an approach to effectively target oncogenic WNT signaling in a significant number of patients with colorectal and other intestinal cancers.


Subject(s)
Bridged-Ring Compounds/pharmacology , Colorectal Neoplasms , Mutation , Neoplasm Proteins , Paclitaxel/pharmacology , Taxoids/pharmacology , Thrombospondins , Tumor Microenvironment/drug effects , Wnt Signaling Pathway , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Thrombospondins/antagonists & inhibitors , Thrombospondins/genetics , Thrombospondins/metabolism , Tumor Microenvironment/genetics , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/genetics , Xenograft Model Antitumor Assays
12.
Sci Adv ; 3(6): e1700090, 2017 06.
Article in English | MEDLINE | ID: mdl-28691093

ABSTRACT

The WNT pathway mediates intercellular signaling that regulates cell fate in both normal development and cancer. It is widely appreciated that the WNT pathway is frequently dysregulated in human cancers through a variety of genetic and epigenetic mechanisms. Targets in the WNT pathway are being extensively pursued for the development of new anticancer therapies, and we have advanced two WNT antagonists for clinical development: vantictumab (anti-FZD) and ipafricept (FZD8-Fc). We examined the antitumor efficacy of these WNT antagonists in combination with various chemotherapies in a large set of patient-derived xenograft models. In responsive models, WNT blockade led to profound synergy with taxanes such as paclitaxel, and the combination activity with taxanes was consistently more effective than with other classes of chemotherapy. Taxane monotherapy increased the frequency of cells with active WNT signaling. This selection of WNT-active chemotherapy-resistant tumorigenic cells was prevented by WNT-antagonizing biologics and required sequential dosing of the WNT antagonist followed by the taxane. The WNT antagonists potentiated paclitaxel-mediated mitotic blockade and promoted widespread mitotic cell death. By blocking WNT/ß-catenin signaling before mitotic blockade by paclitaxel, we found that this treatment effectively sensitizes cancer stem cells to taxanes. This combination strategy and treatment regimen has been incorporated into ongoing clinical testing for vantictumab and ipafricept.


Subject(s)
Antineoplastic Agents/pharmacology , Mitosis/drug effects , Taxoids/pharmacology , Wnt Proteins/antagonists & inhibitors , Cell Death/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Paclitaxel/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/antagonists & inhibitors
13.
Nature ; 545(7654): 360-364, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28489825

ABSTRACT

The Notch signalling pathway mediates cell fate decisions and is tumour suppressive or oncogenic depending on the context. During lung development, Notch pathway activation inhibits the differentiation of precursor cells to a neuroendocrine fate. In small-cell lung cancer, an aggressive neuroendocrine lung cancer, loss-of-function mutations in NOTCH genes and the inhibitory effects of ectopic Notch activation indicate that Notch signalling is tumour suppressive. Here we show that Notch signalling can be both tumour suppressive and pro-tumorigenic in small-cell lung cancer. Endogenous activation of the Notch pathway results in a neuroendocrine to non-neuroendocrine fate switch in 10-50% of tumour cells in a mouse model of small-cell lung cancer and in human tumours. This switch is mediated in part by Rest (also known as Nrsf), a transcriptional repressor that inhibits neuroendocrine gene expression. Non-neuroendocrine Notch-active small-cell lung cancer cells are slow growing, consistent with a tumour-suppressive role for Notch, but these cells are also relatively chemoresistant and provide trophic support to neuroendocrine tumour cells, consistent with a pro-tumorigenic role. Importantly, Notch blockade in combination with chemotherapy suppresses tumour growth and delays relapse in pre-clinical models. Thus, small-cell lung cancer tumours generate their own microenvironment via activation of Notch signalling in a subset of tumour cells, and the presence of these cells may serve as a biomarker for the use of Notch pathway inhibitors in combination with chemotherapy in select patients with small-cell lung cancer.


Subject(s)
Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Receptors, Notch/metabolism , Signal Transduction , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Tumor Microenvironment , Animals , Cell Differentiation , Cell Proliferation/drug effects , Disease Models, Animal , Female , Humans , Lung Neoplasms/drug therapy , Male , Mice , Neoplasm Recurrence, Local/prevention & control , Receptors, Notch/agonists , Receptors, Notch/antagonists & inhibitors , Receptors, Notch/deficiency , Repressor Proteins/metabolism , Small Cell Lung Carcinoma/drug therapy
14.
Cancer Res ; 76(3): 713-23, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26719531

ABSTRACT

Deregulation of the ß-catenin signaling has long been associated with cancer. Intracellular components of this pathway, including axin, APC, and ß-catenin, are frequently mutated in a range of human tumors, but the contribution of specific extracellular ligands that promote cancer development through this signaling axis remains unclear. We conducted a reporter-based screen in a panel of human tumors to identify secreted factors that stimulate ß-catenin signaling. Through this screen and further molecular characterization, we found that R-spondin (RSPO) proteins collaborate with Wnt proteins to activate ß-catenin. RSPO family members were expressed in several human tumors representing multiple malignancies, including ovarian, pancreatic, colon, breast, and lung cancer. We generated specific monoclonal antibody antagonists of RSPO family members and found that anti-RSPO treatment markedly inhibited tumor growth in human patient-derived tumor xenograft models, either as single agents or in combination with chemotherapy. Furthermore, blocking RSPO signaling reduced the tumorigenicity of cancer cells based on serial transplantation studies. Moreover, gene-expression analyses revealed that anti-RSPO treatment in responsive tumors strongly inhibited ß-catenin target genes known to be associated with cancer and normal stem cells. Collectively, our results suggest that the RSPO family is an important stimulator of ß-catenin activity in many human tumors and highlight a new effective approach for therapeutically modulating this fundamental signaling axis.


Subject(s)
Antibodies, Monoclonal/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Thrombospondins/metabolism , beta Catenin/metabolism , Animals , Carcinogenesis , Cell Line, Tumor , HEK293 Cells , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction , Thrombospondins/biosynthesis , Thrombospondins/genetics , Thrombospondins/immunology , Wnt Proteins/metabolism , Xenograft Model Antitumor Assays
15.
Clin Cancer Res ; 21(9): 2084-95, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25934888

ABSTRACT

PURPOSE: The Notch pathway plays an important role in both stem cell biology and cancer. Dysregulation of Notch signaling has been reported in several human tumor types. In this report, we describe the development of an antibody, OMP-59R5 (tarextumab), which blocks both Notch2 and Notch3 signaling. EXPERIMENTAL DESIGN: We utilized patient-derived xenograft tumors to evaluate antitumor effect of OMP-59R5. Immunohistochemistry, RNA microarray, real-time PCR, and in vivo serial transplantation assays were employed to investigate the mechanisms of action and pharmacodynamic readouts. RESULTS: We found that anti-Notch2/3, either as a single agent or in combination with chemotherapeutic agents was efficacious in a broad spectrum of epithelial tumors, including breast, lung, ovarian, and pancreatic cancers. Notably, the sensitivity of anti-Notch2/3 in combination with gemcitabine in pancreatic tumors was associated with higher levels of Notch3 gene expression. The antitumor effect of anti-Notch2/3 in combination with gemcitabine plus nab-paclitaxel was greater than the combination effect with gemcitabine alone. OMP-59R5 inhibits both human and mouse Notch2 and Notch3 function and its antitumor activity was characterized by a dual mechanism of action in both tumor and stromal/vascular cells in xenograft experiments. In tumor cells, anti-Notch2/3 inhibited expression of Notch target genes and reduced tumor-initiating cell frequency. In the tumor stroma, OMP-59R5 consistently inhibited the expression of Notch3, HeyL, and Rgs5, characteristic of affecting pericyte function in tumor vasculature. CONCLUSIONS: These findings indicate that blockade of Notch2/3 signaling with this cross-reactive antagonist antibody may be an effective strategy for treatment of a variety of tumor types.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms, Experimental/drug therapy , Neoplastic Stem Cells/drug effects , Receptor, Notch2/antagonists & inhibitors , Receptors, Notch/antagonists & inhibitors , Animals , Humans , Immunohistochemistry , Mice , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Receptor, Notch3 , Xenograft Model Antitumor Assays
16.
Article in English | MEDLINE | ID: mdl-22885403

ABSTRACT

Inhibitors of phenoloxidase are used routinely to characterise the structural and functional properties of phenoloxidases. Hemocyanin-derived phenoloxidase activity is also sensitive to standard phenoloxidase inhibitors. In this study, we characterise the effects of a number of phenoloxidase inhibitors on hemocyanin-derived phenoloxidase activity from the chelicerate, Limulus polyphemus. Both inhibition type and K(i) values were similar to those observed for hemocyanin-derived phenoloxidase from another chelicerate, Eurypelma californicum. In addition, substrate inhibition was observed at concentrations above 2mM dopamine. The conformation in which two of the inhibitors, namely tropolone and kojic acid, would bind near the Cu(II) centre of hemocyanin is proposed.


Subject(s)
Chelating Agents/pharmacology , Enzyme Inhibitors/pharmacology , Hemocyanins/antagonists & inhibitors , Hemocyanins/metabolism , Horseshoe Crabs/enzymology , Monophenol Monooxygenase/antagonists & inhibitors , Animals , Binding, Competitive , Chelating Agents/metabolism , Copper/metabolism , Dopamine/metabolism , Enzyme Inhibitors/metabolism , Hemocyanins/chemistry , Hexylresorcinol/metabolism , Hexylresorcinol/pharmacology , Kinetics , Models, Molecular , Phenylthiourea/metabolism , Phenylthiourea/pharmacology , Protein Conformation , Pyrones/metabolism , Pyrones/pharmacology , Tropolone/metabolism , Tropolone/pharmacology
17.
Proc Natl Acad Sci U S A ; 109(29): 11717-22, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22753465

ABSTRACT

The Wnt/ß-catenin pathway, which signals through the Frizzled (Fzd) receptor family and several coreceptors, has long been implicated in cancer. Here we demonstrate a therapeutic approach to targeting the Wnt pathway with a monoclonal antibody, OMP-18R5. This antibody, initially identified by binding to Frizzled 7, interacts with five Fzd receptors through a conserved epitope within the extracellular domain and blocks canonical Wnt signaling induced by multiple Wnt family members. In xenograft studies with minimally passaged human tumors, this antibody inhibits the growth of a range of tumor types, reduces tumor-initiating cell frequency, and exhibits synergistic activity with standard-of-care chemotherapeutic agents.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Frizzled Receptors/metabolism , Neoplasms/drug therapy , Wnt Signaling Pathway/drug effects , Animals , Antibodies, Monoclonal/metabolism , Antineoplastic Agents/metabolism , Blotting, Western , CHO Cells , Cricetinae , Cricetulus , Drug Synergism , Genetic Vectors/genetics , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/genetics , Immunohistochemistry , Lentivirus , Luciferases , Neoplasms/metabolism , Peptide Library , Wnt Signaling Pathway/physiology
18.
J Clin Invest ; 120(6): 2109-18, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20484815

ABSTRACT

Antiapoptotic BCL2 family members have been implicated in the pathogenesis of acute myelogenous leukemia (AML), but the functional significance and relative importance of individual proteins (e.g., BCL2, BCL-XL, and myeloid cell leukemia 1 [MCL1]) remain poorly understood. Here, we examined the expression of BCL2, BCL-XL, and MCL1 in primary human hematopoietic subsets and leukemic blasts from AML patients and found that MCL1 transcripts were consistently expressed at high levels in all samples tested. Consistent with this, Mcl1 protein was also highly expressed in myeloid leukemic blasts in a mouse Myc-induced model of AML. We used this model to test the hypothesis that Mcl1 facilitates AML development by allowing myeloid progenitor cells to evade Myc-induced cell death. Indeed, activation of Myc for 7 days in vivo substantially increased myeloid lineage cell numbers, whereas hematopoietic stem, progenitor, and B-lineage cells were depleted. Furthermore, Mcl1 haploinsufficiency abrogated AML development. In addition, deletion of a single allele of Mcl1 from fully transformed AML cells substantially prolonged the survival of transplanted mice. Conversely, the rapid lethality of disease was restored by coexpression of Bcl2 and Myc in Mcl1-haploinsufficient cells. Together, these data demonstrate a critical and dose-dependent role for Mcl1 in AML pathogenesis in mice and suggest that MCL1 may be a promising therapeutic target in patients with de novo AML.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Proteins/genetics , Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Genes, bcl-2 , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cell Leukemia Sequence 1 Protein
19.
J Clin Invest ; 118(3): 946-55, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18292815

ABSTRACT

A fundamental property of leukemic stem cells is clonal dominance of the bone marrow microenvironment. Truncation mutations of CSF3R, which encodes the G-CSF receptor (G-CSFR), are implicated in leukemic progression in patients with severe congenital neutropenia. Here we show that expression of a truncated mutant Csf3r in mice confers a strong clonal advantage at the HSC level that is dependent upon exogenous G-CSF. G-CSF-induced proliferation, phosphorylation of Stat5, and transcription of Stat5 target genes were increased in HSCs isolated from mice expressing the mutant Csf3r. Conversely, the proliferative advantage conferred by the mutant Csf3r was abrogated in myeloid progenitors lacking both Stat5A and Stat5B, and HSC function was reduced in mice expressing a truncated mutant Csf3r engineered to have impaired Stat5 activation. These data indicate that in mice, inappropriate Stat5 activation plays a key role in establishing clonal dominance by stem cells expressing mutant Csf3r.


Subject(s)
Hematopoietic Stem Cells/physiology , Mutation , Receptors, Granulocyte Colony-Stimulating Factor/genetics , STAT5 Transcription Factor/physiology , Animals , Cell Proliferation/drug effects , Granulocyte Colony-Stimulating Factor/pharmacology , Mice , Mice, Inbred C57BL , Neutropenia/congenital , STAT3 Transcription Factor/physiology
20.
Blood ; 109(9): 3906-14, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17218386

ABSTRACT

Expression of the constitutively activated TEL/PDGFbetaR fusion protein is associated with the t(5;12)(q33;p13) chromosomal translocation found in a subset of patients with chronic myelomonocytic leukemia. TEL/PDGFbetaR activates multiple signal transduction pathways in cell-culture systems, and expression of the TEL-PDGFRB fusion gene induces myeloproliferative disease (MPD) in mice. We used gene-targeted mice to characterize the contribution of signal transducer and activator of transcription (Stat) and Src family genes to TEL-PDGFRB-mediated transformation in methylcellulose colony and murine bone marrow transduction/transplantation assays. Fetal liver hematopoietic stem and progenitor cells harboring targeted deletion of both Stat5a and Stat5b (Stat5ab(null/null)) genes were refractory to transformation by TEL-PDGFRB in methylcellulose colony assays. Notably, these cell populations were maintained in Stat5ab(null/null) fetal livers and succumbed to transformation by c-Myc. Surprisingly, targeted disruption of either Stat5a or Stat5b alone also impaired TEL-PDGFRB-mediated transformation. Survival of TPiGFP-->Stat5a(-/-) and TPiGFP-->Stat5a(+/-) mice was significantly prolonged, demonstrating significant sensitivity of TEL-PDGFRB-induced MPD to the dosage of Stat5a. TEL-PDGFRB-mediated MPD was incompletely penetrant in TPiGFP-->Stat5b(-/-) mice. In contrast, Src family kinases Lyn, Hck, and Fgr and the Stat family member Stat1 were dispensable for TEL-PDGFRB disease. Together, these data demonstrate that Stat5a and Stat5b are dose-limiting mediators of TEL-PDGFRB-induced myeloproliferation.


Subject(s)
Gene Dosage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Oncogene Proteins, Fusion/biosynthesis , Proto-Oncogene Proteins c-ets/biosynthesis , Receptor, Platelet-Derived Growth Factor beta/biosynthesis , Repressor Proteins/biosynthesis , STAT5 Transcription Factor/biosynthesis , Signal Transduction , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Gene Expression Regulation, Leukemic/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mice, Knockout , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-ets/genetics , Receptor, Platelet-Derived Growth Factor beta/genetics , Repressor Proteins/genetics , STAT5 Transcription Factor/deficiency , Signal Transduction/genetics , Translocation, Genetic/genetics , Tumor Stem Cell Assay , src-Family Kinases/metabolism , ETS Translocation Variant 6 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...