Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 25(7): 1158-1171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38902519

ABSTRACT

Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1ß and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1ß during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1ß as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.


Subject(s)
COVID-19 , Hippocampus , Interleukin-1beta , Memory Disorders , Mice, Inbred C57BL , Neurogenesis , SARS-CoV-2 , Animals , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Mice , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Hippocampus/immunology , Hippocampus/metabolism , Memory Disorders/immunology , Neurogenesis/immunology , Vaccination , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Vaccines/immunology , Male , Humans , Microglia/immunology , Microglia/metabolism , Disease Models, Animal , Receptors, Interleukin-1 Type I/metabolism , Receptors, Interleukin-1 Type I/genetics , Monocytes/immunology , Monocytes/metabolism , Female
2.
J Neuroinflammation ; 21(1): 24, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233868

ABSTRACT

BACKGROUND: Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. METHODS: We utilized an established murine model of intranasal infection with VEEV and a repository of scRNAseq data from IFN-treated OSN to assess the cellular targets and IFN signaling responses after VEEV exposure. RESULTS: We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 h during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. CONCLUSIONS: Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.


Subject(s)
Encephalitis Virus, Venezuelan Equine , Olfactory Receptor Neurons , Humans , Mice , Animals , Encephalitis Virus, Venezuelan Equine/genetics , Central Nervous System , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL