Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37571437

ABSTRACT

We have designed, assembled, and evaluated a compact instrument capable of capturing the wavefront phase in real time, across various scenarios. Our approach simplifies the optical setup and configuration, which reduces the conventional capture and computation time when compared to other methods that use two defocused images. We evaluated the feasibility of using an electrically tunable lens in our camera by addressing its issues and optimizing its performance. Additionally, we conducted a comparison study between our approach and a Shack-Hartmann sensor. The camera was tested on multiple targets, such as deformable mirrors, lenses with aberrations, and a liquid lens in movement. Working at the highest resolution of the CMOS sensor with a small effective pixel size enables us to achieve the maximum level of detail in lateral resolution, leading to increased sensitivity to high-spatial-frequency signals.

2.
J Chromatogr A ; 1614: 460511, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31542207

ABSTRACT

Although around 90 years have passed since Richards and Loomis developed the first experiments in sonochemistry, ultrasound is still awakening interest in the scientific community, in particular in the Analytical Chemistry field, as a result of the high number of benefits achieved, which are also in accordance with Green Analytical Chemistry principles. In the last years, and among the different reported applications, an important number of works have arisen devoted to the synthesis of new materials (specially nanomaterials), to the development of sonoelectroanalytical sensors or to new spectroscopic approaches, among others. Efforts are also being made to try to understand the real mechanism of such applications. This review article is aimed at providing a general overview of the different applications of ultrasound in Analytical Chemistry, also briefly highlighting its fundamentals and traditional applications, with a special emphasis on the most recent and challenging works that are still in the horizon of its near future.


Subject(s)
Sonication/methods , Electrochemical Techniques , Free Radicals/chemistry , Light , Liquid-Liquid Extraction , Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Solid Phase Extraction , Sonication/instrumentation
3.
Mar Pollut Bull ; 146: 26-32, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31426155

ABSTRACT

The occurrence and composition of microplastics (1-5 mm) was evaluated in six beaches of the island of Tenerife (Canary Islands, Spain). Two of them were located at the North coast (El Socorro and San Marcos) and the rest in the South littoral (Leocadio Machado, El Porís, Los Abriguitos and Playa Grande). Sampling was developed during the months of October, November and December 2018 (depending on the beach) above the high tide line. Isolated microplastics were identified by attenuated total reflection infrared spectroscopy. All the beaches showed a relatively low content of microplastics, below 3.5 g/m2, which is also below 0.069 g/L of sand, except for Playa Grande, which showed an average content of 99 g/m2 or 2.0 g/L of sand. Tar pollution (around 18%) was also found in Playa Grande. The major polymers found were polyethylene, polypropylene and polystyrene, accounting for 69%, 18% and 4%, respectively.


Subject(s)
Environmental Monitoring , Plastics/analysis , Bathing Beaches/statistics & numerical data , Environmental Pollution , Polyethylene/analysis , Polypropylenes/analysis , Polystyrenes/analysis , Spain , Water Pollutants, Chemical/analysis
4.
Ultrason Sonochem ; 48: 39-50, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30080564

ABSTRACT

The interest in application of ultrasonic cavitation for cleaning and surface treatment processes has increased greatly in the last decades. However, not much is known about the behavior of cavitation bubbles inside the microstructural features of the solid substrates. Here we report on an experimental study on dynamics of acoustically driven (38.5 kHz) cavitation bubbles inside the blind and through holes of PMMA plates by using high-speed imaging. Various diameters of blind (150, 200, 250 and 1000 µm) and through holes (200 and 1000 µm) were investigated. Gas bubbles are usually trapped in the holes during substrate immersion in the liquid thus preventing their complete wetting. We demonstrate that trapped gas can be successfully removed from the holes under ultrasound agitation. Besides the primary Bjerknes force and acoustic streaming, the shape oscillations of the trapped gas bubble seem to be a driving force for bubble removal out of the holes. We further discuss the bubble dynamics inside microholes for water and Cu2+ salt solution. It is found that the hole diameter and partly the type of liquid media influences the number, size and dynamics of the cavitation bubbles. The experiments also showed that a large amount of the liquid volume inside the holes can be displaced within one acoustic cycle by the expansion of the cavitation bubbles. This confirmed that ultrasound is a very effective tool to intensify liquid exchange processes, and it might significantly improve micro mixing in small structures. The investigation of the effect of ultrasound power on the bubble density distribution revealed the possibility to control the cavitation bubble distribution inside the microholes. At a high ultrasound power (31.5 W) we observed the highest bubble density at the hole entrances, while reducing the ultrasound power by a factor of ten shifted the bubble locations to the inner end of the blind holes or to the middle of the through holes.

5.
Phys Rev Lett ; 118(6): 064301, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28234516

ABSTRACT

Multibubble sonoluminescence (MBSL) is the emission of light from imploding cavitation bubbles in dense ensembles or clouds. We demonstrate a technique of high-speed recording that allows imaging of bubble oscillations and motion together with emitted light flashes in a nonstationary multibubble environment. Hereby a definite experimental identification of light emitting individual bubbles, as well as details of their collapse dynamics can be obtained. For the extremely bright MBSL of acoustic cavitation in xenon saturated phosphoric acid, we are able to explore effects of bubble translation, deformation, and interaction on MBSL activity. The recordings with up to 0.5 million frames per second show that few and only the largest bubbles in the fields are flashing brightly, and that emission often occurs repetitively. Bubble collisions can lead to coalescence and the start or intensification of the emission, but also to its termination via instabilities and splitting. Bubbles that develop a liquid jet during collapse can flash intensely, but stronger jetting gradually reduces the emissions. Estimates of MBSL collapse temperature peaks are possible by numerical fits of transient bubble dynamics, in one case yielding 38 000 K.

6.
Ultrason Sonochem ; 34: 474-483, 2017 01.
Article in English | MEDLINE | ID: mdl-27773271

ABSTRACT

Despite the increasing use of high frequency ultrasound in heterogeneous reactions, knowledge about the spatial distribution of cavitation bubbles at the irradiated solid surface is still lacking. This gap hinders controllable surface sonoreactions. Here we present an optimization study of the cavitation bubble distribution at a solid sample using sonoluminescence and sonochemiluminescence imaging. The experiments were performed at three ultrasound frequencies, namely 580, 860 and 1142kHz. We found that position and orientation of the sample to the transducer, as well as its material properties influence the distribution of active cavitation bubbles at the sample surface in the reactor. The reason is a significant modification of the acoustic field due to reflections and absorption of the ultrasonic wave by the solid. This is retraced by numerical simulations employing the Finite Element Method, yielding reasonable agreement of luminescent zones and high acoustic pressure amplitudes in 2D simulations. A homogeneous coverage of the test sample surface with cavitation is finally reached at nearly vertical inclination with respect to the incident wave.

7.
Ultrason Sonochem ; 34: 663-676, 2017 01.
Article in English | MEDLINE | ID: mdl-27773293

ABSTRACT

The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter ("red region"), while such emissions are nearly absent close to the horn tip ("blue region"). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general.

8.
Ultrason Sonochem ; 33: 170-181, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27245968

ABSTRACT

Cavitation bubbles collapsing in the vicinity to a solid substrate induce intense micro-convection at the solid. Here we study the transient near-wall flows generated by single collapsing bubbles by chronoamperometric measurements synchronously coupled with high-speed imaging. The individual bubbles are created at confined positions by a focused laser pulse. They reach a maximum expansion radius of approximately 425µm. Several stand-off distances to the flat solid boundary are investigated and all distances are chosen sufficiently large that no gas phase of the expanding and collapsing bubble touches the solid directly. With a microelectrode embedded into the substrate, the time-resolved perturbations in the liquid shear layer are probed by means of a chronoamperometric technique. The measurements of electric current are synchronized with high-speed imaging of the bubble dynamics. The perturbations of the near-wall layer are found to result mainly from ring vortices created by the jetting bubble. Other bubble induced flows, such as the jet and flows following the radial bubble oscillations are perceptible with this technique, but show a minor influence at the stand-off distances investigated.

9.
ACS Appl Mater Interfaces ; 7(7): 4100-8, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25621714

ABSTRACT

For the first time, we apply a high-speed imaging technique to record the activity of acoustically driven cavitation bubbles (86 kHz) on micropatterned surfaces with hydrophobic and hydrophilic stripes. The width of the hydrophobic stripes lies between 3.5 and 115 µm. This work provides the first direct visualization of the preferential location of bubbles on the hydrophobic areas of the patterns. The results confirm our previous prediction that surface cavitation strongly depends on the surface energy of the irradiated substrate. The observations show a remarkable effect of the stripe width on the size, movement, growth, splitting, and multiplying of the bubbles. The high-speed imaging also reveals that there is a minimal width of the hydrophobic stripes that allows bubble attraction and formation. Our observations are supported by a theoretical approach based on the forces acting on the bubbles.

10.
Ultrason Sonochem ; 25: 24-30, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25194210

ABSTRACT

The details of bubble behaviour in chemically active cavitation are still not sufficiently well understood. Here we report on experimental high-speed observations of acoustically driven single-bubble and few-bubble systems with the aim of clarification of the connection of their dynamics with chemical activity. Our experiment realises the sonochemical isomerization reaction of maleic acid to fumaric acid, mediated by bromine radicals, in a bubble trap set-up. The main result is that the reaction product can only be observed in a parameter regime where a small bubble cluster occurs, while a single trapped bubble stays passive. Evaluations of individual bubble dynamics for both cases are given in form of radius-time data and numerical fits to a bubble model. A conclusion is that a sufficiently strong collapse has to be accompanied by non-spherical bubble dynamics for the reaction to occur, and that the reason appears to be an efficient mixing of liquid and gas phase. This finding corroborates previous observations and literature reports on high liquid phase sonochemical activity under distinct parameter conditions than strong sonoluminescence emissions.

11.
Ultrason Sonochem ; 21(6): 2044-51, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24690298

ABSTRACT

The sonoluminescence spectra from acoustic cavitation in aqueous NaCl solutions are systematically studied in a large range of ultrasonic frequencies under variation of electrical power and argon sparging. At the same time, bubble dynamics are analysed by high-speed imaging. Sodium line and continuum emission are evaluated for acoustic driving at 34.5, 90, 150, 365, and 945kHz in the same reactor vessel. The results show that the ratio of sodium line to continuum emission can be shifted by the experimental parameters: an increase in the argon flow increases the ratio, while an increase in power leads to a decrease. At 945kHz, the sodium line is drastically reduced, while the continuum stays at elevated level. Bubble observations reveal a remarkable effect of argon in terms of bubble distribution and stability: larger bubbles of non-spherical shapes form and eject small daughter bubbles which in turn populate the whole liquid. As a consequence, the bubble interactions (splitting, merging) appear enhanced which supports a link between non-spherical bubble dynamics and sodium line emission.

12.
Talanta ; 79(3): 657-64, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19576426

ABSTRACT

Recent developments in Hyperspectral Imaging equipment have made possible the use of this analytical technique for fast scanning of sample surfaces. This technique has turned out to be especially useful in Pharmacy, where information about the distribution of the components in the surface of a tablet can be obtained. One particular application of Hyperspectral Chemical Imaging is the search for singularities inside pharmaceutical tablets, e.g. coating defects. Nevertheless, one problem has to be faced: how to analyze a sample without any previous knowledge about it, or having only the minimum information about the tablet. In this work a new methodology, based on correlation coefficients, is introduced to obtain valuable information about one Hyperspectral Image (detection of defects, punctual contaminants, etc.) without any previous knowledge. The methodology combines Principal Component Analysis (PCA), correlation coefficient between one specific pixel included in the image and the rest of the image; and a new enhanced contrast function to obtain more selective chemical and spatial information about the image. To illustrate the applicability of the proposed methodology, real tablets of ibuprofen have been studied. The proposed methodology is presented as a control technique to detect batch variability, defects in final tablets and punctual contaminants, being a potential supplementary tool for quality controls. In addition, the usefulness of the proposed methodology is not exclusive to NIR-CI devices, but to any hyperspectral and multivariate image system.


Subject(s)
Pharmaceutical Preparations/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Ibuprofen/chemistry , Principal Component Analysis , Surface Properties , Tablets
13.
Appl Spectrosc ; 62(12): 1363-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19094396

ABSTRACT

The diffuse reflectance near-infrared (NIR) spectrum of a powdered sample includes the contribution of specular and diffuse reflectance, which is a function of absorbance and scattering. The fraction of light scattered depends in a complex manner on the physical properties of the sample such as particle size, refraction index, etc. Several theories to study the dependence of NIR spectra on the particle size have been proposed. The best known is the Kubelka-Munk model, an approach based on continuous mathematics. Recently Dahm and Dahm put forward an alternative method, the representative layer theory (RLT), which uses discontinuous mathematics as a basis. This approach can be used to identify and disentangle the scattering and absorbance signals as well as their dependence on the particle size. The scattering and absorption coefficient of NaCl (a nonabsorbing material) and of potassium hydrogen phthalate, KHP (a strong absorber), have been estimated through the application of the representative layer theory, working on a particle size range from 63 to 450 microm. In both samples, the absorption coefficient of the sample (K) remains constant and practically independent of the particle size, while the scattering coefficient of the sample (S) decreases when the particle diameter increases, becoming stable around a diameter of 250 microm.

SELECTION OF CITATIONS
SEARCH DETAIL
...