Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Lancet Infect Dis ; 23(3): 361-370, 2023 03.
Article in English | MEDLINE | ID: mdl-36328000

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention is used in 13 countries in the Sahel region of Africa to prevent malaria in children younger than 5 years. Resistance of Plasmodium falciparum to seasonal malaria chemoprevention drugs across the region is a potential threat to this intervention. METHODS: Between December, 2015, and March, 2016, and between December, 2017, and March, 2018, immediately following the 2015 and 2017 malaria transmission seasons, community surveys were done among children younger than 5 years and individuals aged 10-30 years in districts implementing seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine in Burkina Faso, Chad, Guinea, Mali, Nigeria, Niger and The Gambia. Dried blood samples were collected and tested for P falciparum DNA by PCR. Resistance-associated haplotypes of the P falciparum genes crt, mdr1, dhfr, and dhps were identified by quantitative PCR and sequencing of isolates from the collected samples, and survey-weighted prevalence and prevalence ratio between the first and second surveys were estimated for each variant. FINDINGS: 5130 (17·5%) of 29 274 samples from 2016 and 2176 (7·6%) of 28 546 samples from 2018 were positive for P falciparum on quantitative PCR. Among children younger than 5 years, parasite carriage decreased from 2844 of 14 345 samples (19·8% [95% CI 19·2-20·5]) in 2016 to 801 of 14 019 samples (5·7% [5·3-6·1]) in 2018 (prevalence ratio 0·27 [95% CI 0·24-0·31], p<0·0001). Genotyping found no consistent evidence of increasing prevalence of amodiaquine resistance-associated variants of crt and mdr1 between 2016 and 2018. The dhfr haplotype IRN (consisting of 51Ile-59Arg-108Asn) was common at both survey timepoints, but the dhps haplotype ISGEAA (431Ile-436Ser-437Gly-540Glu-581Ala-613Ala), crucial for resistance to sulfadoxine-pyrimethamine, was always rare. Parasites carrying amodiaquine resistance-associated variants of both crt and mdr1 together with dhfr IRN and dhps ISGEAA occurred in 0·05% of isolates. The emerging dhps haplotype VAGKGS (431Val-436Ala-437Gly-540Lys-581Gly-613Ser) was present in four countries. INTERPRETATION: In seven African countries, evidence of a significant reduction in parasite carriage among children receiving seasonal malaria chemoprevention was found 2 years after intervention scale-up. Combined resistance-associated haplotypes remained rare, and seasonal malaria chemoprevention with sulfadoxine-pyrimethamine and amodiaquine is expected to retain effectiveness. The threat of future erosion of effectiveness due to dhps variant haplotypes requires further monitoring. FUNDING: Unitaid.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Child , Humans , Plasmodium falciparum , Amodiaquine/therapeutic use , Haplotypes , Antimalarials/therapeutic use , Seasons , Prevalence , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Drug Combinations , Chemoprevention , Nigeria , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/therapeutic use , Genomics , Drug Resistance/genetics
2.
Lancet Glob Health ; 10(12): e1782-e1792, 2022 12.
Article in English | MEDLINE | ID: mdl-36400084

ABSTRACT

BACKGROUND: A 2021 clinical trial of seasonal RTS,S/AS01E (RTS,S) vaccination showed that vaccination was non-inferior to seasonal malaria chemoprevention (SMC) in preventing clinical malaria. The combination of these two interventions provided significant additional protection against clinical and severe malaria outcomes. Projections of the effect of this novel approach to RTS,S vaccination in seasonal transmission settings for extended timeframes and across a range of epidemiological settings are needed to inform policy recommendations. METHODS: We used a mathematical, individual-based model of malaria transmission that was fitted to data on the relationship between entomological inoculation rate and parasite prevalence, clinical disease, severe disease, and deaths from multiple sites across Africa. The model was validated with results from a phase 3b trial assessing the effect of SV-RTS,S in Mali and Burkina Faso. We developed three intervention efficacy models with varying degrees and durations of protection for our population-level modelling analysis to assess the potential effect of an RTS,S vaccination schedule based on age (doses were delivered to children aged 6 months, 7·5 months, and 9 months for the first three doses, and at 27 months of age for the fourth dose) or season (children aged 5-17 months at the time of first vaccination received the first three doses in the 3 months preceding the transmission season, with any subsequent doses up to five doses delivered annually) in seasonal transmission settings both in the absence and presence of SMC with sulfadoxine-pyrimethamine plus amodiaquine. This is modelled as a full therapeutic course delivered every month for four or five months of the peak in transmission season. Estimates of cases and deaths averted in a population of 100 000 children aged 0-5 years were calculated over a 15-year time period for a range of levels of malaria transmission intensity (Plasmodium falciparum parasite prevalence in children aged 2-10 years between 10% and 65%) and over two west Africa seasonality archetypes. FINDINGS: Seasonally targeting RTS,S resulted in greater absolute reductions in malaria cases and deaths compared with an age-based strategy, averting an additional 14 000-47 000 cases per 100 000 children aged 5 years and younger over 15 years, dependent on seasonality and transmission intensity. We predicted that adding seasonally targeted RTS,S to SMC would reduce clinical incidence by up to an additional 42 000-67 000 cases per 100 000 children aged 5 years and younger over 15 years compared with SMC alone. Transmission season duration was a key determinant of intervention effect, with the advantage of adding RTS,S to SMC predicted to be smaller with shorter transmission seasons. INTERPRETATION: RTS,S vaccination in seasonal settings could be a valuable additional tool to existing interventions, with seasonal delivery maximising the effect relative to an age-based approach. Decisions surrounding deployment strategies of RTS,S in such settings will need to consider the local and regional variations in seasonality, current rates of other interventions, and potential achievable RTS,S coverage. FUNDING: UK Medical Research Council, UK Foreign Commonwealth & Development Office, The Wellcome Trust, and The Royal society.


Subject(s)
Malaria Vaccines , Malaria , Child , Humans , Malaria Vaccines/therapeutic use , Seasons , Malaria/epidemiology , Malaria/prevention & control , Plasmodium falciparum , Burkina Faso/epidemiology
3.
Malar J ; 20(1): 128, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33663488

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention (SMC) is a strategy for malaria control recommended by the World Health Organization (WHO) since 2012 for Sahelian countries. The Mali National Malaria Control Programme adopted a plan for pilot implementation and nationwide scale-up by 2016. Given that SMC is a relatively new approach, there is an urgent need to assess the costs and cost effectiveness of SMC when implemented through the routine health system to inform decisions on resource allocation. METHODS: Cost data were collected from pilot implementation of SMC in Kita district, which targeted 77,497 children aged 3-59 months. Starting in August 2014, SMC was delivered by fixed point distribution in villages with the first dose observed each month. Treatment consisted of sulfadoxine-pyrimethamine and amodiaquine once a month for four consecutive months, or rounds. Economic and financial costs were collected from the provider perspective using an ingredients approach. Effectiveness estimates were based upon a published mathematical transmission model calibrated to local epidemiology, rainfall patterns and scale-up of interventions. Incremental cost effectiveness ratios were calculated for the cost per malaria episode averted, cost per disability adjusted life years (DALYs) averted, and cost per death averted. RESULTS: The total economic cost of the intervention in the district of Kita was US $357,494. Drug costs and personnel costs accounted for 34% and 31%, respectively. Incentives (payment other than salary for efforts beyond routine activities) accounted for 25% of total implementation costs. Average financial and economic unit costs per child per round were US $0.73 and US $0.86, respectively; total annual financial and economic costs per child receiving SMC were US $2.92 and US $3.43, respectively. Accounting for coverage, the economic cost per child fully adherent (receiving all four rounds) was US $6.38 and US $4.69, if weighted highly adherent, (receiving 3 or 4 rounds of SMC). When costs were combined with modelled effects, the economic cost per malaria episode averted in children was US $4.26 (uncertainty bound 2.83-7.17), US $144 (135-153) per DALY averted and US $ 14,503 (13,604-15,402) per death averted. CONCLUSIONS: When implemented at fixed point distribution through the routine health system in Mali, SMC was highly cost-effective. As in previous SMC implementation studies, financial incentives were a large cost component.


Subject(s)
Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Communicable Disease Control/economics , Cost-Benefit Analysis/statistics & numerical data , Malaria/prevention & control , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Chemoprevention/economics , Child, Preschool , Drug Combinations , Humans , Infant , Mali , Seasons
4.
Nat Commun ; 11(1): 3799, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732892

ABSTRACT

Plasmodium falciparum in pregnancy is a major cause of adverse pregnancy outcomes. We combine performance estimates of standard rapid diagnostic tests (RDT) from trials of intermittent screening and treatment in pregnancy (ISTp) with modelling to assess whether screening at antenatal visits improves upon current intermittent preventative therapy with sulphadoxine-pyrimethamine (IPTp-SP). We estimate that RDTs in primigravidae at first antenatal visit are substantially more sensitive than in non-pregnant adults (OR = 17.2, 95% Cr.I. 13.8-21.6), and that sensitivity declines in subsequent visits and with gravidity, likely driven by declining susceptibility to placental infection. Monthly ISTp with standard RDTs, even with highly effective drugs, is not superior to monthly IPTp-SP. However, a hybrid strategy, recently adopted in Tanzania, combining testing and treatment at first visit with IPTp-SP may offer benefit, especially in areas with high-grade SP resistance. Screening and treatment in the first trimester, when IPTp-SP is contraindicated, could substantially improve pregnancy outcomes.


Subject(s)
Malaria, Falciparum/diagnosis , Malaria, Falciparum/prevention & control , Mass Screening/methods , Pregnancy Complications, Parasitic/prevention & control , Prenatal Care/methods , Antimalarials/therapeutic use , Drug Combinations , Female , Health Policy , Humans , Malaria, Falciparum/drug therapy , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Pregnancy , Pregnancy Complications, Parasitic/drug therapy , Pregnancy Trimester, First , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Tanzania , World Health Organization
5.
Sci Rep ; 8(1): 7088, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29712991

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

6.
Sci Rep ; 8(1): 5489, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615763

ABSTRACT

SMC has been introduced widely in the Sahel since its recommendation by WHO in 2012. This study, which provided evidence of feasibility that supported the recommendation, included school-age and pre-school children. School-age children were not included in the 2012 recommendation but bear an increasing proportion of cases. In 2006, consultations with health-staff were held to choose delivery methods. The preferred approach, door-to-door with the first daily-dose supervised by a community-health-worker (CHW), was piloted and subsequently evaluated on a large-scale in under-5's in 2008 and then in under-10's 2009-2010. Coverage was higher among school-age children (96%(95%CI 94%,98%) received three treatments in 2010) than among under 5's (90%(86%,94%)). SMC was more equitable than LLINs (odds-ratio for increase in coverage for a one-level rise in socioeconomic-ranking (a 5-point scale), was 1.1 (0.95,1.2) in 2009, compared with OR 1.3 (1.2,1.5) for sleeping under an LLIN. Effective communication was important in achieving high levels of uptake. Continued training and supervision were needed to ensure CHWs adhered to treatment guidelines. SMC door-to-door can, if carefully supervised, achieve high equitable coverage and high-quality delivery. SMC programmes can be adapted to include school-age children, a neglected group that bears a substantial burden of malaria.


Subject(s)
Chemoprevention/statistics & numerical data , Delivery of Health Care/statistics & numerical data , Malaria/prevention & control , Seasons , Child , Child, Preschool , Communication , Female , Humans , Infant , Male , Senegal
7.
PLoS Med ; 14(2): e1002243, 2017 02.
Article in English | MEDLINE | ID: mdl-28245259

ABSTRACT

BACKGROUND: Malaria transmission has declined substantially in the 21st century, but pregnant women in areas of sustained transmission still require protection to prevent the adverse pregnancy and birth outcomes associated with malaria in pregnancy (MiP). A recent call to action has been issued to address the continuing low coverage of intermittent preventive treatment of malaria in pregnancy (IPTp). This call has, however, been questioned by some, in part due to concerns about resistance to sulphadoxine-pyrimethamine (SP), the only drug currently recommended for IPTp. METHODS AND FINDINGS: Using an existing mathematical model of MiP, we combined estimates of the changing endemicity of malaria across Africa with maps of SP resistance mutations and current coverage of antenatal access and IPTp with SP (IPTp-SP) across Africa. Using estimates of the relationship between SP resistance mutations and the parasitological efficacy of SP during pregnancy, we estimated the varying impact of IPTp-SP across Africa and the incremental value of enhancing IPTp-SP uptake to match current antenatal care (ANC) coverage. The risks of MiP and malaria-attributable low birthweight (mLBW) in unprotected pregnancies (i.e., those not using insecticide-treated nets [ITNs]) leading to live births fell by 37% (33%-41% 95% credible interval [crI]) and 31% (27%-34% 95% crI), respectively, from 2000 to 2015 across endemic areas in sub-Saharan Africa. However, these gains are fragile, and coverage is far from optimal. In 2015, 9.5 million (8.3 million-10.4 million 95% crI) of 30.6 million pregnancies in these areas would still have been infected with Plasmodium falciparum without intervention, leading to 750,000 (390,000-1.1 million 95% crI) mLBW deliveries. In all, 6.6 million (5.6 million-7.3 million 95% crI) of these 9.5 million (69.3%) pregnancies at risk of infection (and 53.4% [16.3 million/30.6 million] of all pregnancies) occurred in settings with near-perfect SP curative efficacy (>99%) based on the most recent estimates of resistance. Forty-four percent of these pregnancies (23% of all pregnancies) were not receiving any IPTp-SP despite making ≥3 ANC visits, representing 160,000 (94,000-236,000 95% crI) preventable low birthweight (LBW) deliveries. Only 4% (1.4 million) of pregnancies occurred in settings with >10% prevalence of the sextuple haplotype associated with compromised SP effectiveness. Forty-two percent of all pregnancies occurred in settings where the quintuple dhfr/dhps haplotype had become established but where in vivo efficacy data suggest SP maintains the majority of its effectiveness in clearing infections. Not accounting for protection from the use of ITNs during pregnancy, expanding IPTp-SP to all women with ≥3 ANC visits in Africa could prevent an additional 215,000 (128,000-318,000 95% crI) LBW deliveries. In 26 countries with sufficient recent data to estimate ITN impact (population-based ITN usage data that can be stratified by gravidity), we estimate that, due primarily to low ITN use by primigravidae, only 16.5% of the potential LBW births prevented by scaling up IPTp-SP would in fact have already have been prevented through ITN use. Our analysis also highlights the difficulties associated with estimating the relationship between the effectiveness of interventions against parasitological endpoints such as placental infection at delivery and health outcomes including birthweight, which is also determined by a wide range of unrelated factors. We also did not capture other aspects of malaria burden such as clinical malaria, maternal and neonatal anaemia, and miscarriage, all of which increase the overall importance of effective preventative strategies but have their own relationship with transmission intensity, parity, and SP resistance. CONCLUSIONS: Despite recent declines in malaria transmission in Africa, the burden of MiP in the absence of adequate prevention remains substantial. Even accounting for SP resistance, extending IPTp-SP to all women attending ANC, as well as long-lasting insecticidal net distribution targeted towards first-time mothers, would have a sizeable impact upon maternal and infant health in almost all malaria-endemic settings in sub-Saharan Africa.


Subject(s)
Antimalarials/therapeutic use , Birth Weight , Drug Resistance, Multiple , Malaria/prevention & control , Models, Theoretical , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Africa South of the Sahara , Child , Child, Preschool , Drug Combinations , Female , Humans , Pregnancy
8.
PLoS One ; 11(11): e0166951, 2016.
Article in English | MEDLINE | ID: mdl-27898699

ABSTRACT

BACKGROUND: Seasonal Malaria Chemoprevention (SMC) is currently recommended for children under five in areas where malaria transmission is highly seasonal. We explored children's caregivers' and community health workers' (CHWs) responses to an extended 5-month SMC programme. METHODS: Thirteen in-depth interviews and eight focus group discussions explored optimal and suboptimal 'uptake' of SMC to examine facilitators and barriers to caregivers' uptake. RESULTS: There did not appear to be major differences between caregivers of children with optimal and sub-optimal SMC uptake in terms of their knowledge of malaria, their perceptions of the effect of SMC on a child's health, nor their understanding of chemoprevention. Caregivers experienced difficulty in prioritising SMC for well children, perceiving medication being for treatment rather than prevention. Prior to the study, caregivers had become accustomed to rapid diagnostic testing (RDT) for malaria, and therefore blood testing for malaria during the baseline survey at the start of the SMC programme may have positively influenced uptake. Facilitators of uptake included caregivers' trust in and respect for administrators of SMC (including CHWs), access to medication and supportive (family) networks. Barriers to uptake related to poor communication of timings of community gatherings, travel distances, absence during SMC home deliveries, and limited demand for SMC due to lack of previous experience. Future delivery of SMC by trained CHWs would be acceptable to caregivers. CONCLUSION: A combination of caregivers' physical access to SMC medication, the drug regimen, trust in the medical profession and perceived norms around malaria prevention all likely influenced caregivers' level of uptake. SMC programmes need to consider: 1) developing supportive, accessible and flexible modes of drug administration including home delivery and village community kiosks; 2) improving demand for preventive medication including the harnessing of learnt trust; and 3) developing community-based networks for users to support optimal uptake of SMC.


Subject(s)
Antimalarials/therapeutic use , Caregivers , Case Management , Chemoprevention/methods , Community Health Workers , Malaria/prevention & control , Attitude of Health Personnel , Child, Preschool , Diagnostic Tests, Routine/methods , Female , Focus Groups , Ghana/epidemiology , Humans , Infant , Infant, Newborn , Malaria/epidemiology , Malaria/transmission , Male , Patient Acceptance of Health Care , Prevalence , Seasons
10.
Nat Commun ; 4: 1609, 2013.
Article in English | MEDLINE | ID: mdl-23511473

ABSTRACT

Plasmodium falciparum placental infection during pregnancy is harmful for both mother and child. Protection from placental infection is parity-dependent, that is, acquired over consecutive pregnancies. However, the infection status of the placenta can only be assessed at delivery. Here, to better understand the mechanism underlying this parity-dependence, we fitted a model linking malaria dynamics within the general population to observed placental histology. Our results suggest that immunity resulting in less prolonged infection is a greater determinant of the parity-specific patterns than immunity that prevents placental sequestration. Our results also suggest the time when maternal blood first flows into the placenta is a high-risk period. Therefore, preventative strategies implementable before or early in pregnancy, such as insecticide-treated net usage in women of child-bearing age or any future vaccine, could substantially reduce the number of women who experience placental infection.


Subject(s)
Malaria, Falciparum/immunology , Placenta Diseases/immunology , Pregnancy Complications, Parasitic/immunology , Female , Humans , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...