Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Dairy Sci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38642657

ABSTRACT

The cheese microbiota plays a critical role in influencing its sensory and physicochemical properties. In this study, traditional Apulian Caciocavallo cheese coming from 4 different dairies in the same area and produced following standardized procedures have been examined, as well as the different bulk milks and natural whey starter cultures used. Moreover, considering the cheese wheels as the blocks of Caciocavallo cheeses as whole, these were characterized at different layers (i.e., core, under-rind, and rind) of the block using a multi-omics approach. In addition to physical-chemical characterization, culturomics, quantitative PCR, metagenomics, and metabolomics analysis, have been carried out post-salting and throughout ripening time (2 mo) to investigate the major shifts in the succession of the microbiota and flavor development. Culture-dependent and 16S rRNA metataxonomics results clearly clustered samples based on the microbiota biodiversity related to the production dairy plant as the result of the use of different NWS or intrinsic conditions of each production site. At the beginning of the ripening, cheeses were dominated by the Lactobacillus and, in 2 dairies (Art and SdC), Streptococcus genera associated with the NWS. The analysis allowed us to show that, although the diversity of identified genera did not change significantly between the rind, under-rind and core fractions of the same samples, there was an evolution in the relative abundance and absolute quantification, modifying and differentiating profiles during ripening. The qPCR mainly differentiated the temporal adaptation of those species originating from bulk milks and those provided by NWSs. The primary starter detected in NWS and cheese reassured the high relative concentration of 1-butanol, 2-butanol, 2-heptanol, 2-butanone, acetoin, delta-dodecalactone, hexanoic acid ethyl ester, octanoic acid ethyl ester, and VFFA during ripening, while cheeses displaying low abundances of Streptococcus and Lactococcus (dairy Del) have a lower total concentration of acetoin compared with Art and SdC. However, the sub-dominant strains and NSLAB present in cheeses are responsible for the production of secondary metabolites belonging to the chemical classes of ketones, alcohols, and organic acids, reaffirming the importance and relevance of autochthonous strains of each dairy plant although considering a delimited production area.

2.
Biomedicines ; 12(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275405

ABSTRACT

Endocrine disruptors (EDCs) are chemicals that interfere with the endocrine system. EDC exposure may contribute to the development of obesity, type 2 diabetes, and cardiovascular diseases by impacting the composition of an infant's gut microbiota during the first 1000 days of life. To explore the relationship between maternal urinary levels of Bisphenol-A and phthalates (UHPLC-MS/MS), and the composition of the infant gut microbiota (16S rDNA) at age 12 months (T3) and, retrospectively, at birth (T0), 1 month (T1), and 6 months (T2), stool samples from 20 infants breastfed at least once a day were analyzed. Metataxonomic bacteria relative abundances were correlated with EDC values. Based on median Bisphenol-A levels, infants were assigned to the over-exposed group (O, n = 8) and the low-exposed group (B, n = 12). The B-group exhibited higher gut colonization of the Ruminococcus torques group genus and the O-group showed higher abundances of Erysipelatoclostridium and Bifidobacterium breve. Additionally, infants were stratified as high-risk (HR, n = 12) or low-risk (LR, n = 8) exposure to phthalates, based on the presence of at least three phthalates with concentrations exceeding the cohort median values; no differences were observed in gut microbiota composition. A retrospective analysis of gut microbiota (T0-T2) revealed a disparity in ß-diversity between the O-group and the B-group. Considering T0-T3, the Linear Discriminant Effect Size indicated differences in certain microbes between the O-group vs. the B-group and the HR-group vs. the LR-group. Our findings support the potential role of microbial communities as biomarkers for high EDC exposure levels. Nevertheless, further investigations are required to deeply investigate this issue.

3.
Nutrients ; 15(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38140285

ABSTRACT

A healthy intestinal permeability facilitates the selective transport of nutrients, metabolites, water, and bacterial products, involving cellular, neural, hormonal, and immune factors. An altered intestinal permeability indicates pathologic phenotypes and is associated with the exacerbation of obesity and related comorbidities. To investigate the impact of altered permeability in obese patients undergoing a calorie-restrictive dietary regimen (VLCKD), we collected urinary and fecal samples from obese patients with both normal and altered permeability (determined based on the lactulose/mannitol ratio) before and after treatment. The analysis of volatile organic compounds (VOCs) aids in understanding the metabolites produced by the intestinal microbiota in this unique ecological niche. Furthermore, we examined clinical and anthropometric variables from the cohort and compared them to significant VOC panels. Consequently, we identified specific markers in the metabolomics data that differentiated between normal and altered profiles before and after the diet. These markers indicated how the variable contribution specifically accounted for interleukins and lipopolysaccharides (LPS). The targeted metabolomics experiment detected no differences in measured short-chain fatty acids (SCFA). In summary, our study evaluated metabolomic markers capable of distinguishing low-grade inflammation conditions, exacerbated in more advanced stages of obesity with altered intestinal permeability.


Subject(s)
Diet, Ketogenic , Humans , Intestinal Barrier Function , Obesity/metabolism , Diet , Inflammation/complications , Permeability
4.
J Dermatol Sci ; 112(2): 99-108, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37858476

ABSTRACT

BACKGROUND: Human scalp hair follicles (HFs) engage in olfactory receptor (OR)-dependent chemosensation. Activation of olfactory receptor family 2 subfamily AT member 4 (OR2AT4) by the synthetic, sandalwood-like odorant Sandalore® up-regulated HF antimicrobial peptide expression of dermcidin (DCD), which had previously been thought to be produced exclusively by sweat and sebaceous glands. OBJECTIVES: To understand if intrafollicular DCD production can be stimulated by a commonly used cosmetic odorant, thus altering human HF microbiome composition in a clinically beneficial manner. METHODS: DCD expression was compared between fresh-frozen scalp biopsies and microdissected, full-length scalp HFs, organ-cultured in the presence/absence of the OR2AT4 agonist, Sandalore® and/or antibiotics and/or the competitive OR2AT4 antagonist, Phenirat®. Amplicon-based sequencing and microbial growth assays were performed to assess how this treatment affected the HF microbiome. RESULTS: Synthetic odorant treatment upregulated epithelial DCD expression and exerted antimicrobial activity in human HFs ex vivo. Combined antibiotic and odorant treatment, during an ex vivo dysbiosis event, prevented HF tissue damage and favoured a more physiological microbiome composition. Sandalore®-conditioned medium, containing higher DCD content, favoured Staphylococcus epidermidis and Malassezia restricta over S. aureus and M. globosa, while exhibiting antimicrobial activity against Cutibacterium acnes. These effects were reversed by co-administration of Phenirat®. CONCLUSIONS: We provide the first proof-of-principle that a cosmetic odorant impacts the human HF microbiome by up-regulating antimicrobial peptide production in an olfactory receptor-dependent manner. Specifically, a synthetic sandalwood-like odorant stimulates intrafollicular DCD production, likely via OR2AT4, and thereby controls microbial overgrowth. Thus, deserving further exploration as an adjuvant therapeutic principle in the management of folliculitis and dysbiosis-associated hair diseases.


Subject(s)
Anti-Infective Agents , Receptors, Odorant , Humans , Hair Follicle/metabolism , Odorants , Staphylococcus aureus , Dysbiosis , Receptors, Odorant/metabolism , Antimicrobial Peptides , Anti-Infective Agents/metabolism
5.
Nutrients ; 15(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37686784

ABSTRACT

Several recent studies deepened the strong connection between gut microbiota and obesity. The effectiveness of the very-low-calorie ketogenic diet (VLCKD) has been measured in terms of positive impact on the host homeostasis, but little is known of the modification exerted on the intestinal metabolome. To inspect this complex relationship, we analyzed both fecal and urinary metabolome in terms of volatile organic compounds (VOCs) by the GC-MS method in 25 obese patients that were under VLCKD for eight weeks. Partial least square discriminant analysis evidenced specific urinary and fecal metabolites whose profile can be considered a signature of a partial restore toward the host eubiosis. Specifically, among various keystone VOCs, the decreased concentration of four statistically significant fecal esters (i.e., propanoic acid pentyl ester, butanoic acid hexyl ester, butanoic acid pentyl ester, and pentanoic acid butyl ester) supports the positive effect of VLCKD treatment. Our pilot study results suggest a potential positive effect of VLCKD intervention affecting fecal and urinary volatilome profiles from obese patients. Meta-omics techniques including the study of genes and transcripts will help in developing new interventions useful in preventing or treating obesity and its associated health problems.


Subject(s)
Diet, Ketogenic , Volatile Organic Compounds , Humans , Butyric Acid , Pilot Projects , Esters , Obesity
6.
Front Nutr ; 10: 1215836, 2023.
Article in English | MEDLINE | ID: mdl-37396126

ABSTRACT

Background: Microbiota unbalance has been proven to affect chronic kidney disease (CKD) patients and, noteworthy, microbiota composition and activity are implicated in CKD worsening. The progression of kidney failure implies an exceeding accumulation of waste compounds deriving from the nitrogenous metabolism in the intestinal milieu. Therefore, in the presence of an altered intestinal permeability, gut-derived uremic toxins, i.e., indoxyl sulfate (IS) and p-cresyl sulfate (PCS), can accumulate in the blood. Methods: In a scenario facing the nutritional management as adjuvant therapy, the present study assessed the effectiveness of an innovative synbiotics for its ability to modulate the patient gut microbiota and metabolome by setting a randomized, single-blind, placebo-controlled, pilot trial accounting for IIIb-IV stage CKD patients and healthy controls. Metataxonomic fecal microbiota and fecal volatilome were analyzed at the run-in, after 2 months of treatment, and after 1 month of wash out. Results: Significant changes in microbiota profile, as well as an increase of the saccharolytic metabolism, in feces were found for those CKD patients that were allocated in the synbiotics arm. Conclusions: Noteworthy, the here analyzed data emphasized a selective efficacy of the present synbiotics on a stage IIIb-IV CKD patients. Nonetheless, a further validation of this trial accounting for an increased patient number should be considered. Clinical trial registration: https://clinicaltrials.gov/, identifier NCT03815786.

7.
Nutrients ; 15(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299420

ABSTRACT

Together with its comorbidities, nonalcoholic fatty liver disease (NAFLD) is likely to rise further with the obesity epidemic. However, the literature's evidence shows how its progression can be reduced by the administration of calorie-restrictive dietary interventions and physical activity regimens. The liver function and the gut microbiota have been demonstrated to be closely related. With the aim of ascertaining the impact of a treatment based on the combination of diet and physical activity (versus physical activity alone), we recruited 46 NAFLD patients who were divided into two groups. As a result, we traced the connection between volatile organic compounds (VOCs) from fecal metabolomics and a set of statistically filtered clinical variables. Additionally, we identified the relative abundances of gut microbiota taxa obtained from 16S rRNA gene sequencing. Statistically significant correlations emerged between VOCs and clinical parameters, as well as between VOCs and gut microbiota taxa. In comparison with a physical activity regimen alone, we disclose how ethyl valerate and pentanoic acid butyl ester, methyl valerate, and 5-hepten-2-one, 6-methyl changed because of the positive synergistic effect exerted by the combination of the Mediterranean diet and physical activity regimens. Moreover, 5-hepten-2-one, 6-methyl positively correlated with Sanguinobacteroides, as well as the two genera Oscillospiraceae-UCG002 and Ruminococcaceae UCG010 genera.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , RNA, Ribosomal, 16S/genetics , Diet , Metabolomics , Exercise , Liver , Diet, High-Fat
9.
Front Microbiol ; 14: 1112328, 2023.
Article in English | MEDLINE | ID: mdl-36726372

ABSTRACT

Introduction: With the purpose to evaluate the effects of dietary olive cake, a source of bioactive phenolic compounds, as feed supplementation of lactating dairy cows on fatty acid composition, volatile organic compounds, and microbiological profiles of Provola cheese, we performed a two-arm study where control and experimental administered cows derived dairy have been compared. Methods: Our panel of analyses include metabolomics, physicochemical detected variables, culture dependent and independent analyses, and a stringent statistical approach aimful at disclosing only statistically significant results. Results and discussion: Looking at the physicochemical variable's profiles, a higher content of unsaturated fatty acids, polyunsaturated fatty acid, and conjugated linoleic acids as well of proteins were observed in experimental cheese samples, indicating the beneficial effect of dietary supplementation. Furthermore, based on volatilome composition, a clear cluster separation between control and experimental cheeses was obtained, mainly related to terpenes degradation, able of influencing their aroma and taste. Microbiological results showed a decrease of some spoilage related microbial groups in experimental cheeses, probably due to the inhibitory effect exerted by polyphenols compounds, that contrarily did not affect the core taxa of all cheese samples. This paper confirmed the promising utilization of olive by-product in farming practices to obtain more sustainable and safe dairy food products with lower environmental impact, mainly in Sicily and Mediterranean area, where waste disposal poses serious environmental and economic problems.

10.
Nutrients ; 14(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36364843

ABSTRACT

BACKGROUND: Fermented foods are attracting increasing interest due to their nutritional and health benefits, including a positive impact on gut microbiota exerted by their associated microbes. However, information relative to traditional fermented dairy products, along with their autochthonous microbiota, is still fragmented and poorly standardized. Therefore, our aim was to collect and aggregate data useful for obtaining a comprehensive overview translated in a classical database interface that can be easily handled by users. METHODS: a preliminary inventory was built up by systematically collecting data from publicly available resources for the creation of a list of traditional dairy foods produced worldwide, including additional metadata useful for stratifying, and collapsing subgroups. RESULTS: we developed the Fermented Dairy Food Database (FDF-DB), a feasible resource comprising 1852 traditional dairy foods (cheeses, fermented milks, and yogurt) for which microbial content and other associated metadata such as geographical indication label, country/region of origin, technological aspects were gathered. CONCLUSIONS: FDF-DB is a useful and user-friendly resource where taxonomic information and processing production details converge. This resource will be of great aid for researchers, food industries, stakeholders and any user interested in the identification of technological and microbiological features characterizing traditional fermented dairy products.


Subject(s)
Cheese , Cultured Milk Products , Fermented Foods , Microbiota , Cultured Milk Products/microbiology , Yogurt/analysis , Cheese/microbiology , Fermentation
11.
Nutrients ; 14(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36364888

ABSTRACT

Since irritable bowel syndrome (IBS)-a common gastrointestinal (GI) disorder-still lacks effective therapy, a nutritional approach may represent a practical alternative. Different reports demonstrated that a low-fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) diet (LFD) reduces symptoms in IBS with diarrhea (IBS-D) patients, also inducing beneficial pathophysiological and biochemical modifications. More recently, diets with alternative cereals having a different gluten composition, such as tritordeum, have also been considered (TBD). We investigated the impact of TBD and LFD on the fecal metabolome composition in 38 IBS-D patients randomly allocated to the two diets for 12 weeks. Summarily, at baseline, the profile of fecal volatile organic compounds (VOCs) of IBS-D patients was not significantly different in the two groups. After treatment, significant changes were observed in the two groups regarding the VOCs content since some of them increased in the TBD group (namely, decanoic acid), whereas others (i.e., nonanal and ethanol) increased in the LFD one. Further, at baseline, short-chain fatty acids were positively related to inflammation and showed a significant decreasing trend after both diets compared to baseline values (namely, acetic and propanoic acid). Preliminary results from this pilot study suggest a potential positive intervention of TBD and LFD affecting the fecal metabolome composition in IBS-D patients.


Subject(s)
Irritable Bowel Syndrome , Monosaccharides , Humans , Disaccharides , Pilot Projects , Oligosaccharides , Diet , Metabolome , Fermentation , Diet, Carbohydrate-Restricted
12.
Microbiome ; 10(1): 148, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104726

ABSTRACT

BACKGROUND: In nature, microbial communities undergo changes in composition that threaten their resiliency. Here, we interrogated sourdough, a natural cereal-fermenting metacommunity, as a dynamic ecosystem in which players are subjected to continuous environmental and spatiotemporal stimuli. RESULTS: The inspection of spontaneous sourdough metagenomes and transcriptomes revealed dominant, subdominant and satellite players that are engaged in different functional pathways. The highest microbial richness was associated with the highest number of gene copies per pathway. Based on meta-omics data collected from 8 spontaneous sourdoughs and their identified microbiota, we de novo reconstructed a synthetic microbial community SDG. We also reconstructed SMC-SD43 from scratch using the microbial composition of its spontaneous sourdough equivalent for comparison. The KEGG number of dominant players in the SDG was not affected by depletion of a single player, whereas the subdominant and satellite species fluctuated, revealing unique contributions. Compared to SMC-SD43, SDG exhibited broader transcriptome redundancy. The invariant volatilome profile of SDG after in situ long-term back slopping revealed its stability. In contrast, SMC-SD43 lost many taxon members. Dominant, subdominant and satellite players together ensured gene and transcript redundancy. CONCLUSIONS: Our study demonstrates how, by starting from spontaneous sourdoughs and reconstructing these communities synthetically, it was possible to unravel the metabolic contributions of individual players. For resilience and good performance, the sourdough metacommunity must include dominant, subdominant and satellite players, which together ensure gene and transcript redundancy. Overall, our study changes the paradigm and introduces theoretical foundations for directing food fermentations. Video Abstract.


Subject(s)
Bread , Microbiota , Bread/analysis , Edible Grain , Fermentation , Food Microbiology , Microbiota/genetics
13.
Gut Microbes ; 14(1): 2107386, 2022.
Article in English | MEDLINE | ID: mdl-35939623

ABSTRACT

Our understanding of microorganisms residing within our gut and their roles in the host metabolism and immunity advanced greatly over the past 20 years. Currently, microbiome studies are shifting from association and correlation studies to studies demonstrating causality of identified microbiome signatures and identification of molecular mechanisms underlying these interactions. This transformation is crucial for the efficient translation into clinical application and development of targeted strategies to beneficially modulate the intestinal microbiota. As mechanistic studies are still quite challenging to perform in humans, the causal role of microbiota is frequently evaluated in animal models that need to be appropriately selected. Here, we provide a comprehensive overview on approaches that can be applied in addressing causality of host-microbe interactions in five major animal model organisms (Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and pigs). We particularly focused on discussing methods available for studying the causality ranging from the usage of gut microbiota transfer, diverse models of metabolic and immune perturbations involving nutritional and chemical factors, gene modifications and surgically induced models, metabolite profiling up to culture-based approached. Furthermore, we addressed the impact of the gut morphology, physiology as well as diet on the microbiota composition in various models and resulting species specificities. Finally, we conclude this review with the discussion on models that can be applied to study the causal role of the gut microbiota in the context of metabolic syndrome and host immunity. We hope this review will facilitate important considerations for appropriate animal model selection.


Subject(s)
Gastrointestinal Microbiome , Immune System Diseases , Microbiota , Animals , Drosophila melanogaster , Gastrointestinal Microbiome/physiology , Humans , Swine , Zebrafish
14.
Microbiol Spectr ; 10(5): e0051422, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35972127

ABSTRACT

Raw cow milk is one of the most complex and unpredictable food matrices shaped by the interaction between biotic and abiotic factors. Changes in dairy farming conditions impact the quality and safety of milk, which largely depend on seasonality. Changes in microbiome composition and relative metabolic pathways are derived from microbial interactions, as well as from seasonality, mammary, and extramammary conditions (e.g., farm management and outdoor environment). Breeding data from >600 Apulian farms were examined, and the associated physicochemical parameters were processed by a reductionist approach to obtain a raw cow milk sample subset. We investigated the microbiological variability in cultivable and 16S rRNA sequencing microbiota as affected by seasonal fluctuations at two time points (winter and summer seasons). We identified families (Xanthomonadaceae, Enterobacteriaceae, and Pseudomonadaceae) whose increased abundance during winter may cause a shift toward a pathobiont microbial niche that leads to lower milk quality. Apulian summer season conditions were advantageous to the presence of specific taxa, i.e., Streptococcaceae (i.e., Lactococcus) and Limosilactobacillus fermentum, which in turn may favor better milk preservation. IMPORTANCE The strength of this study lies in the microbiological characterization of a wide range of farm management data to achieve a more comprehensive framework of Apulian milk. Specific regional pedoclimatic and management conditions impact the taxa present and their abundances within this ecological food niche. The obtained results lay the groundwork for comparison with other worldwide extensive farming areas.


Subject(s)
Dairying , Milk , Cattle , Female , Animals , Milk/metabolism , Milk/microbiology , Farms , Dairying/methods , RNA, Ribosomal, 16S/genetics , Seasons
15.
Front Microbiol ; 13: 859467, 2022.
Article in English | MEDLINE | ID: mdl-35814671

ABSTRACT

Celiac disease (CD) is an inflammatory autoimmune disorder triggered by the ingestion of gluten from wheat and other cereals. Nowadays, its positive diagnosis is based on invasive approaches such as the histological examination of intestinal biopsies and positive serology screening of antibodies. After proven diagnosis, the only admissible treatment for CD individuals is strict life-long adherence to gluten-free diet (GFD), although it is not a conclusive therapy. Acting by different mechanisms and with different etiologies, both CD and GFD have a great impact on gut microbiota that result in a different taxa composition. Altered production of specific metabolites reflects these microbiota changes. In this light, the currently available literature reports some suggestions about the possible use of specific metabolites, detected by meta-omics analyses, as potential biomarkers for a CD non-invasive diagnosis. To highlight insights about metabolomics application in CD study, we conducted a narrative dissertation of selected original articles published in the last decade. By applying a systematic search, it clearly emerged how the metabolomic signature appears to be contradictory, as well as poorly investigated.

16.
Nutrients ; 14(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807739

ABSTRACT

There is an increasing interest in investigating dietary strategies able to modulate the gut microbial ecosystem which, in turn, may play a key role in human health. Dietary fibers (DFs) are widely recognized as molecules with prebiotic effects. The main objective of this systematic review was to: (i) analyze the results available on the impact of DF intervention on short chain fatty acids (SCFAs) production; (ii) evaluate the interplay between the type of DF intervention, the gut microbiota composition and its metabolic activities, and any other health associated outcome evaluated in the host. To this aim, initially, a comprehensive database of literature on human intervention studies assessing the effect of confirmed and candidate prebiotics on the microbial ecosystem was developed. Subsequently, studies performed on DFs and analyzing at least the impact on SCFA levels were extracted from the database. A total of 44 studies from 42 manuscripts were selected for the analysis. Among the different types of fiber, inulin was the DF investigated the most (n = 11). Regarding the results obtained on the ability of fiber to modulate total SCFAs, seven studies reported a significant increase, while no significant changes were reported in five studies, depending on the analytical methodology used. A total of 26 studies did not show significant differences in individual SCFAs, while the others reported significant differences for one or more SCFAs. The effect of DF interventions on the SCFA profile seemed to be strictly dependent on the dose and the type and structure of DFs. Overall, these results underline that, although affecting microbiota composition and derived metabolites, DFs do not produce univocal significant increase in SCFA levels in apparently healthy adults. In this regard, several factors (i.e., related to the study protocols and analytical methods) have been identified that could have affected the results obtained in the studies evaluated. Future studies are needed to better elucidate the relationship between DFs and gut microbiota in terms of SCFA production and impact on health-related markers.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Adult , Dietary Fiber/analysis , Fatty Acids, Volatile/metabolism , Humans , Prebiotics/analysis
17.
PLoS One ; 17(7): e0269933, 2022.
Article in English | MEDLINE | ID: mdl-35849580

ABSTRACT

Lichen Planopilaris (LPP) is a lymphatic disease affecting the scalp that is characterized by a chronic and destructive inflammation process, named as 'cicatricial alopecia' in which the hair follicles are targeted and may involve predominantly lymphocytes or neutrophils. Scalp and biopsy layers have never been used to investigate microbial community composition and its relative taxa abundances in LPP. We sought to examine the significant taxa of this chronic relapsing inflammatory skin disease, together with inspect the existing connections with metabolic pathways featuring this microbial community. We used a multilevel analysis based on 16S rRNA marker sequencing in order to detect OTU abundances in pathologic/healthy samples, real time PCR for measuring the levels of IL-23 interleukin expression and urinary metabolomics to find out volatile organic metabolites (VOMs). By using a linear regression model, we described peculiar taxa that significantly differentiated LPP and healthy samples. We inspected taxa abundances and interleukin mRNA levels and the Microbacteriaceae family resulted negatively correlated with the IL-23 expression. Moreover, starting from 16S taxa abundances, we predicted the metabolic pathways featuring this microbial community. By inspecting microbial composition, sample richness, metabolomics profiles and the relative metabolic pathways in a cohort of LPP and healthy samples we deepened the contribution of significant taxa that are connected to inflammation maintenance and microbiota plasticity in LPP pathology.


Subject(s)
Lichen Planus , Microbiota , Alopecia/metabolism , Biopsy , Humans , Inflammation , Interleukin-23/genetics , Lichen Planus/pathology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
18.
Nutrients ; 14(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35745219

ABSTRACT

Fructose intolerance (FI) is a widespread non-genetic condition in which the incomplete absorption of fructose leads to gastro-intestinal disorders. The crucial role of microbial dysbiosis on the onset of these intolerance symptoms together with their persistence under free fructose diets are driving the scientific community towards the use of probiotics as a novel therapeutic approach. In this study, we evaluated the prevalence of FI in a cohort composed of Romanian adults with Functional Grastrointestinal Disorders (FGIDs) and the effectiveness of treatment based on the probiotic formulation EQBIOTA® (Lactiplantibacillus plantarum CECT 7484 and 7485 and Pediococcus acidilactici CECT 7483). We evaluated the impact of a 30-day treatment both on FI subjects and healthy volunteers. The gastrointestinal symptoms and fecal volatile metabolome were evaluated. A statistically significant improvement of symptoms (i.e., bloating, and abdominal pain) was reported in FI patient after treatment. On the other hand, at the baseline, the content of volatile metabolites was heterogeneously distributed between the two study arms, whereas the treatment led differences to decrease. From our analysis, how some metabolomics compounds were correlated with the improvement and worsening of clinical symptoms clearly emerged. Preliminary observations suggested how the improvement of gastrointestinal symptoms could be induced by the increase of anti-inflammatory and protective substrates. A deeper investigation in a larger patient cohort subjected to a prolonged treatment would allow a more comprehensive evaluation of the probiotic treatment effects.


Subject(s)
Fructose Intolerance , Gastrointestinal Diseases , Pediococcus acidilactici , Probiotics , Adult , Fructose , Fructose Intolerance/diagnosis , Humans , Metabolomics , Pediococcus , Probiotics/therapeutic use
19.
Nutrients ; 14(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35565740

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, and its prevalence worldwide is increasing. Several studies support the pathophysiological role of the gut-liver axis, where specific signal pathways are finely tuned by intestinal microbiota both in the onset and progression of NAFLD. In the present study, we investigate the impact of different lifestyle interventions on the gut microbiota composition in 109 NAFLD patients randomly allocated to six lifestyle intervention groups: Low Glycemic Index Mediterranean Diet (LGIMD), aerobic activity program (ATFIS_1), combined activity program (ATFIS_2), LGIMD plus ATFIS_1 or ATFIS2 and Control Diet based on CREA-AN (INRAN). The relative abundances of microbial taxa at all taxonomic levels were explored in all the intervention groups and used to cluster samples based on a statistical approach, relying both on the discriminant analysis of principal components (DAPCs) and on a linear regression model. Our analyses reveal important differences when physical activity and the Mediterranean diet are merged as treatment and allow us to identify the most statistically significant taxa linked with liver protection. These findings agree with the decreased 'controlled attenuation parameter' (CAP) detected in the LGIMD-ATFIS_1 group, measured using FibroScan®. In conclusion, our study demonstrates the synergistic effect of lifestyle interventions (diet and/or physical activity programs) on the gut microbiota composition in NAFLD patients.


Subject(s)
Diet, Mediterranean , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Exercise , Glycemic Index , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
20.
Antioxidants (Basel) ; 11(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35326217

ABSTRACT

Grape pomace (GP), a major byproduct obtained from the winemaking process, is characterized by a high amount of phenolic compounds and secondary plant metabolites, with potential beneficial effects on human health. Therefore, GP is a source of bioactive compounds with antioxidant, antimicrobial, and anti-inflammatory activity. As people are paying more attention to sustainability, in this work, we evaluate two different extractions (aqueous and hydroalcoholic) of GP bioactive compounds. In vitro simulated gastrointestinal digestion of the GP extracts was performed to improve the bioavailability and bioaccessibility of polyphenols. The antioxidant activity (ABTS and DPPH assays) and the phenolic characterization of the extracts by UHPLC-DAD were evaluated. The antimicrobial effects of GP antioxidants in combination with a probiotic (Lactiplantibacillus plantarum) on the growth of pathogenic microorganisms (Escherichia coli, Bacillus megaterium, and Listeria monocytogenes) were evaluated. As a result, an increase of antioxidant activity of aqueous GP extracts during the gastrointestinal digestion, and a contextual decrease of hydroalcoholic extracts, were detected. The main compounds assessed by UHPLC-DAD were anthocyanins, phenolic acids, flavonoids, and stilbenes. Despite lower antioxidant activity, due to the presence of antimicrobial active compounds, the aqueous extracts inhibited the growth of pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...