Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(33): 17463-17475, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39105736

ABSTRACT

Despite national and international regulations, plastic microbeads are still widely used in personal care and consumer products (PCCPs). These exfoliants and rheological modifiers cause significant microplastic pollution in natural aquatic environments. Microbeads from nonderivatized biomass like cellulose and lignin can offer a sustainable alternative to these nondegradable microplastics, but processing this biomass into microbeads is challenging due to limited viable solvents and high biomass solution viscosities. To produce biomass microbeads of the appropriate size range for PCCPs (ca. 200-800 µm diameter) with shapes and mechanical properties comparable to those of commercial plastic microbeads, we used a surfactant-free emulsion/precipitation method, mixing biomass solutions in 1-ethyl-3-methylimidazolium acetate (EMImAc) with various oils and precipitating with ethanol. While yield of microbeads within the target size range highly depends on purification conditions, optimized protocols led to >90% yield of cellulose microbeads. Kraft lignin was then successfully incorporated into beads at up to 20 wt %; however, higher lignin contents result in emulsion destabilization unless surfactant is added. Finally, the microbead shape and surface morphology can be tuned using oils of varying viscosities and interfacial tensions. Dripping measurements and pendant drop tensiometry confirmed that the higher affinity of cellulose for certain oil/IL interfaces largely controlled the observed surface morphology. This work thus outlines how biomass composition, oil viscosity, and interfacial properties can be altered to produce more sustainable microbeads for use in PCCPs, which have desirable mechanical properties and can be produced over a wide range of shapes and surface morphologies.


Subject(s)
Biomass , Cellulose , Emulsions , Microspheres , Emulsions/chemistry , Cellulose/chemistry , Lignin/chemistry , Imidazoles/chemistry , Particle Size , Surface-Active Agents/chemistry
2.
Adv Healthc Mater ; : e2400457, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738584

ABSTRACT

Chemical permeation enhancers (CPEs) represent a prevalent and safe strategy to enable noninvasive drug delivery across skin-like biological barriers such as the tympanic membrane (TM). While most existing CPEs interact strongly with the lipid bilayers in the stratum corneum to create defects as diffusion paths, their interactions with the delivery system, such as polymers forming a hydrogel, can compromise gelation, formulation stability, and drug diffusion. To overcome this challenge, differing interactions between CPEs and the hydrogel system are explored, especially those with sodium dodecyl sulfate (SDS), an ionic surfactant and a common CPE, and those with methyl laurate (ML), a nonionic counterpart with a similar length alkyl chain. Notably, the use of ML effectively decouples permeation enhancement from gelation, enabling sustained delivery across TMs to treat acute otitis media (AOM), which is not possible with the use of SDS. Ciprofloxacin and ML are shown to form a pseudo-surfactant that significantly boosts transtympanic permeation. The middle ear ciprofloxacin concentration is increased by 70-fold in vivo in a chinchilla AOM model, yielding superior efficacy and biocompatibility than the previous highest-performing formulation. Beyond improved efficacy and biocompatibility, this single-CPE formulation significantly accelerates its progression toward clinical deployment.

3.
Soft Matter ; 20(23): 4567-4582, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809054

ABSTRACT

Complex fluids including colloidal suspensions, microgels, and entangled wormlike micelles (WLMs) can develop heterogeneous flow regions under imposed steady shear. In some of these systems, the evolution to this flow state from rest is accompanied by flow reversal - when a portion of the fluid moves opposite to the imposed flow direction. Flow reversal was proposed to occur in shear startup when (1) the fluid has significant elasticity, and (2) the flow becomes heterogeneous immediately following the stress overshoot [McCauley et al., J. Rheol., 2023, 67, 661-681]. To verify this hypothesis, a new method is developed for measuring flow heterogeneity. Upon cessation of the imposed flow, elasticity and flow heterogeneity cause retraction of the fluid, which is quantified with particle tracking velocimetry. Flow is stopped at key times during shear startup in two systems: a gel-like WLM that exhibits flow reversal before heterogeneous flow and a viscoelastic, fluid-like WLM that does not. The degree of flow heterogeneity is inferred from the shape and magnitude of velocity profiles measured during retraction. Flow heterogeneity develops earlier in gel-like WLMs - supporting the proposed flow reversal criteria. For comparison, heterogeneous Couette flows described with the upper-convected Maxwell or Germann-Cook-Beris models are analyzed. These theoretical flow problems confirm that stark differences in rheological properties across the flow geometry can cause significant fluid retraction and reproduce key features of the experimentally observed retraction. This new method can be used to extract quantitative information about spatially heterogeneous flows in viscoelastic complex fluids, whether or not flow reversal occurs.

4.
Soft Matter ; 20(15): 3322-3336, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38536224

ABSTRACT

Polymers functionalized with inorganic silane groups have been used in wide-ranging applications due to the silane reactivity, which enables formation of covalently-crosslinked polymeric structures. Utilizing stimuli-responsive polymers in these hybrid systems can lead to smart and tunable behavior for sensing, drug delivery, and optical coatings. Previously, the thermoresponsive polymer poly(N-isopropyl acrylamide) (PNIPAM) functionalized with 3-(trimethoxysilyl)propyl methacrylate (TMA) demonstrated unique aqueous self-assembly and optical responses following temperature elevation. Here, we investigate how cosolvent addition, particularly ethanol and N,N-dimethyl formamide (DMF), impacts these transition temperatures, optical clouding, and structure formation in NIPAM/TMA copolymers. Versus purely aqueous systems, these solvent mixtures can introduce additional phase transitions and can alter the two-phase region boundaries based on temperature and solvent composition. Interestingly, TMA incorporation strongly alters phase boundaries in the water-rich regime for DMF-containing systems but not for ethanol-containing systems. Cosolvent species and content also alter the aggregation and assembly of NIPAM/TMA copolymers, but these effects depend on polymer architecture. For example, localizing the TMA towards one chain end in 'blocky' domains leads to formation of uniform micelles with narrow dispersities above the cloud point for certain solvent compositions. In contrast, polydisperse aggregates form in random copolymer and PNIPAM homopolymer solutions - the size of which depends on solvent composition. The resulting optical responses and thermoreversibility also depend strongly on cosolvent content and copolymer architecture. Cosolvent incorporation thus increases the versatility of inorganic-functionalized responsive polymers for diverse applications by providing a simple way to tune the structure size and optical response.

5.
Biomacromolecules ; 25(2): 1291-1302, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38170593

ABSTRACT

Bicontinuous thermotropic liquid crystal (LC) materials, e.g., double gyroid (DG) phases, have garnered significant attention due to the potential utility of their 3D network structures in wide-ranging applications. However, the utility of these materials is significantly constrained by the lack of robust molecular design rules for shape-filling amphiphiles that spontaneously adopt the saddle curvatures required to access these useful supramolecular assemblies. Toward this aim, we synthesized anomerically pure Guerbet-type glycolipids bearing cellobiose head groups and branched alkyl tails and studied their thermotropic LC self-assembly. Using a combination of differential scanning calorimetry, polarized optical microscopy, and small-angle X-ray scattering, our studies demonstrate that Guerbet cellobiosides exhibit a strong propensity to self-assemble into DG morphologies over wide thermotropic phase windows. The stabilities of these assemblies sensitively depend on the branched alkyl tail structure and the anomeric configuration of the glycolipid in a previously unrecognized manner. Complementary molecular simulations furnish detailed insights into the observed self-assembly characteristics, thus unveiling molecular motifs that foster network phase self-assembly that will enable future designs and applications of network LC materials.


Subject(s)
Cellobiose , Liquid Crystals , Glycolipids/chemistry , Liquid Crystals/chemistry , Calorimetry, Differential Scanning , Microscopy
6.
Macromolecules ; 56(17): 6834-6847, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-38774522

ABSTRACT

Poloxamers, ABA triblock polymers composed of a poly(propylene oxide) (PPO) midblock (B) and poly(ethylene oxide) (PEO) endblocks (A), are widely studied for biomedical applications. Aqueous poloxamer 407 (P407; also referred to as F127) undergoes a solution-to-gel transition with increasing temperature, driven by the formation and ordering of micelles onto periodic lattices; however, the gel temperature and resulting modulus has limited tunability. Here, reverse P407 (RP407), a BAB polymer of the same composition and molar mass but the inverted architecture, is synthesized via anionic polymerization. The micellization and gelation temperatures of RP407 are higher than that of P407 and the PPO endblocks allow for intermicelle bridging; however, both single-component solutions favor body-centered cubic (BCC) packings. Further, aqueous RP407 displays a "soft gel" region with interesting rheological behavior, including viscoelastic aging and thermal hysteresis. Combining P407 and RP407 yields solutions with intermediate transition temperatures and alters the size and micelle packing. While the single-component solutions produce BCC packings, the blends form close-packed structures and larger micelles of higher aggregation numbers. Blends of P407 with an analogous AB diblock (E111P32) display similar behavior, whereas RP407/diblock blends form intermediate-sized BCC-packed micelles. These differences in packing and aggregation alter the local environments within the gels, which could have implications for applications such as drug delivery and protein stabilization.

SELECTION OF CITATIONS
SEARCH DETAIL