Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 236: 116833, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31491456

ABSTRACT

AIMS: Inflammatory bowel disease is a chronic relapsing inflammation that affects the gastrointestinal tract, causing changes in colonic motility. The evolution of these changes is not completely understood and possibly related to symptoms that appear in different degrees of the intestinal inflammation. Therefore, our aim is evaluate during 14 days of assessment aspects of colonic contractility using 2,4,6-trinitrobenzenesulfonic acid (TNBS) model of inflammation in rats and associate the inflammatory process with colonic motility. METHODS: Contractility and inflammatory parameters were assessed in the same animal in six different moments: before intestinal inflammation induction, 2, 5, 8, 11, and 14 days after induction. The mechanical activity was determined by alternating current biosusceptometry (ACB) and subdivided into rhythmic propagating ripples (RPR) and rhythmic propulsive motor complexes (RPMC). We assessed inflammation by determining myeloperoxidase activity in feces. RESULTS: Transient and permanent changes were observed in colonic motility as a function of the inflammatory process evaluated through myeloperoxidase activity. We identified two contraction profiles: RPR and RPMC. The microscopic analysis demonstrated a depth of damage caused by an injury that was associated with changes in motility. CONCLUSIONS: We implemented a robust and adequate (specific) signal processing to quantify two measured colonic frequency patterns. Thus, we performed a detailed temporal analysis of the consequences of TNBS-induced inflammation on colonic motility in rats. Our approach enables further long-term assessments in the same animal with different mechanisms and duration of injury, remission, treatments and their motor consequences.


Subject(s)
Colitis/pathology , Disease Models, Animal , Inflammation/pathology , Inflammatory Bowel Diseases/physiopathology , Intestinal Mucosa/physiopathology , Muscle Contraction , Trinitrobenzenesulfonic Acid/toxicity , Animals , Colitis/chemically induced , Inflammation/chemically induced , Male , Rats , Rats, Wistar
2.
IEEE Trans Nanobioscience ; 18(3): 456-462, 2019 07.
Article in English | MEDLINE | ID: mdl-30998477

ABSTRACT

In this paper, the application of a technique to evaluate in vivo biodistribution of magnetic nanoparticles (MNP) is addressed: the Multichannel AC Biosusceptometry System (MC-ACB). It allows real-time assessment of magnetic nanoparticles in both bloodstream clearance and liver accumulation, where a complex network of inter-related cells is responsible for MNP uptake. Based on the acquired MC-ACB images, we propose a mathematical model which helps to understand the distribution and accumulation pharmacokinetics of MNP. The MC-ACB showed a high time resolution to detect and monitor MNP, providing sequential images over the particle biodistribution. Utilizing the MC-ACB instrument, we assessed regions corresponding to the heart and liver, and we determined the MNP transfer rates between the bloodstream and the liver. The pharmacokinetic model resulted in having a strong correlation with the experimental data, suggesting that the MC-ACB is a valuable and accessible imaging device to assess in vivo and real-time pharmacokinetic features of MNP.


Subject(s)
Diagnostic Imaging , Image Processing, Computer-Assisted/methods , Magnetite Nanoparticles , Signal Processing, Computer-Assisted , Animals , Diagnostic Imaging/instrumentation , Diagnostic Imaging/methods , Equipment Design , Ferric Compounds/pharmacokinetics , Male , Manganese Compounds/pharmacokinetics , Particle Size , Rats , Rats, Wistar , Tissue Distribution
3.
J Nanobiotechnology ; 15(1): 22, 2017 Mar 21.
Article in English | MEDLINE | ID: mdl-28327191

ABSTRACT

BACKGROUND: We introduce and demonstrate that the AC biosusceptometry (ACB) technique enables real-time monitoring of magnetic nanoparticles (MNPs) in the bloodstream. We present an ACB system as a simple, portable, versatile, non-invasive, and accessible tool to study pharmacokinetic parameters of MNPs, such as circulation time, in real time. We synthesized and monitored manganese doped iron oxide nanoparticles in the bloodstream of Wistar rats using two different injection protocols. Aiming towards a translational approach, we also simultaneously evaluated cardiovascular parameters, including mean arterial pressure, heart rate, and episodes of arrhythmia in order to secure the well-being of all animals. RESULTS: We found that serial injections increased the circulation time compared with single injections. Immediately after each injection, we observed a transitory drop in arterial pressure, a small drop in heart rate, and no episodes of arrhythmia. Although some cardiovascular effects were observed, they were transitory and easily recovered in both protocols. CONCLUSIONS: These results indicate that the ACB system may be a valuable tool for in vivo, real-time MNP monitoring that allows associations with other techniques, such as pulsatile arterial pressure and electrocardiogram recordings, helping ensuring the protocol safety, which is a fundamental step towards clinical applications.


Subject(s)
Blood Circulation Time , Ferric Compounds/blood , Magnetite Nanoparticles/chemistry , Magnetometry/methods , Animals , Arrhythmias, Cardiac/chemically induced , Blood Pressure , Electrocardiography , Ferric Compounds/pharmacokinetics , Heart Rate , Magnetics , Male , Particle Size , Rats , Rats, Wistar
4.
Nanomedicine ; 13(4): 1519-1529, 2017 05.
Article in English | MEDLINE | ID: mdl-28214607

ABSTRACT

We describe the development of a joint in vivo/ex vivo protocol to monitor magnetic nanoparticles in animal models. Alternating current biosusceptometry (ACB) enables the assessment of magnetic nanoparticle accumulation, followed by quantitative analysis of concentrations in organs of interest. We present a study of real-time liver accumulation, followed by the assessment of sequential biodistribution using the same technique. For quantification, we validated our results by comparing all of the data with electron spin resonance (ESR). The ACB had viable temporal resolution and accuracy to differentiate temporal parameters of liver accumulation, caused by vasculature extravasation and macrophages action. The biodistribution experiment showed different uptake profiles for different doses and injection protocols. Comparisons with the ESR system indicated a correlation index of 0.993. We present the ACB system as an accessible and versatile tool to monitor magnetic nanoparticles, allowing in vivo and real-time evaluations of distribution and quantitative assessments of particle concentrations.


Subject(s)
Liver/metabolism , Magnetics/methods , Magnetite Nanoparticles/chemistry , Animals , Electron Spin Resonance Spectroscopy , Male , Rats, Wistar , Tissue Distribution
5.
Mater Sci Eng C Mater Biol Appl ; 48: 80-5, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25579899

ABSTRACT

Alternate Current Biosusceptometry (ACB) is a promising bio-magnetic method, radiation free and easily performed used for gastric emptying exams. Due to development on its sensitivity level, interesting nature, noninvasiveness and low cost it has attracted a lot of attention. In this work, magnetic nanoparticles of Mn-Zn ferrite as well as dextrose-modified nanoparticles were synthesized to be used as possible tracers in ACB gastric emptying exams. In addition, a magnetic muco-adhesive gel was obtained by modifying the ferrite nanoparticles with cellulose. Based on in-vivo tests in rats, we show that the pure ferrite nanoparticles, whose isoelectric point was found to be at pH=3.2, present a great sensitivity to pH variations along the gastrointestinal tract, while the reduction of the isoelectric point by the dextrose modification leads to suitable nanoparticles for rapid gastric emptying examinations. On the other hand, the in-vivo tests show that the muco-adhesive cellulose gel presents substantial stomach adhesion and is a potential drug delivery system easily traceable by the ACB system.


Subject(s)
Diagnostic Techniques, Digestive System , Glucose/chemistry , Magnetite Nanoparticles/chemistry , Magnetometry/methods , Animals , Cellulose/chemistry , Diagnostic Techniques, Digestive System/instrumentation , Drug Delivery Systems , Gastric Emptying , Gels/chemistry , Hydrogen-Ion Concentration , Isoelectric Point , Magnesium/chemistry , Magnetometry/instrumentation , Male , Materials Testing , Rats, Wistar , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL