Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Int Immunopharmacol ; 137: 112450, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38906007

ABSTRACT

Inflammation, apoptosis and oxidative stress play crucial roles in the deterioration of severe acute pancreatitis-associated acute respiratory distress syndrome (SAP-ARDS). Unfortunately, despite a high mortality rate of 45 %[1], there are limited treatment options available for ARDS outside of last resort options such as mechanical ventilation and extracorporeal support strategies[2]. This study investigated the potential therapeutic role and mechanisms of AQP9 inhibitor RG100204 in two animal models of severe acute pancreatitis, inducing acute respiratory distress syndrome: 1) a sodium-taurocholate induced rat model, and 2) and Cerulein and lipopolysaccharide induced mouse model. RG100204 treatment led to a profound reduction in inflammatory cytokine expression in pancreatic, and lung tissue, in both models. In addition, infiltration of CD68 + and CD11b + cells into these tissues were reduced in RG100204 treated SAP animals, and edema and SAP associated tissue damage were improved. Moreover, we demonstrate that RG100204 reduced apoptosis in the lungs of rat SAP animals, and reduces NF-κB signaling, NLRP3, expression, while profoundly increasing the Nrf2-dependent anti oxidative stress response. We conclude that AQP9 inhibition is a promising strategy for the treatment of pancreatitis and its systemic complications, such as ARDS.


Subject(s)
NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Pancreatitis , Respiratory Distress Syndrome , Signal Transduction , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Pancreatitis/drug therapy , NF-E2-Related Factor 2/metabolism , Male , Signal Transduction/drug effects , Mice , Rats , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Aquaporins/metabolism , Aquaporins/antagonists & inhibitors , Disease Models, Animal , Rats, Sprague-Dawley , Lung/pathology , Lung/drug effects , Lung/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Taurocholic Acid , Lung Injury/drug therapy , Lung Injury/metabolism , Lung Injury/pathology , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Oxidative Stress/drug effects , Apoptosis/drug effects , Ceruletide , Humans , Heme Oxygenase (Decyclizing)/metabolism
2.
Cells ; 12(17)2023 08 29.
Article in English | MEDLINE | ID: mdl-37681902

ABSTRACT

Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.


Subject(s)
Aquaporins , Body Fluids , Intestinal Absorption , Gastrointestinal Absorption , Gastrointestinal Tract
3.
Nutrients ; 15(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37630841

ABSTRACT

Milk is an important source of nutrients and energy, but there are still many uncertainties regarding the health effects of milk and dairy products consumption. Milk from different species varies in physicochemical and nutritional properties. We previously showed that dietary supplements with different milks in rats trigger significant differences in metabolic and inflammatory states, modulating mitochondrial functions in metabolically active organs such as the liver and skeletal muscle. Here, we have deepened the effects of isoenergetic supplementation of milk (82 kJ) from cow (CM), donkey (DM) or human (HM) on hepatic metabolism to understand the interlink between mitochondrial metabolic flexibility, lipid storage and redox state and to highlight the possible role of two hepatocyte aquaporins (AQPs) of metabolic relevance, AQP8 and AQP9, in this crosstalk. Compared with rats with no milk supplementation, DM- and HM-fed rats had reduced hepatic lipid content with enhanced mitochondrial function and decreased oxidative stress. A marked reduction in AQP8, a hydrogen peroxide channel, was seen in the liver mitochondria of DM-fed rats compared with HM-fed, CM-fed and control animals. DM-fed or HM-fed rats also showed reduced hepatic inflammatory markers and less collagen and Kupffer cells. CM-fed rats showed higher hepatic fat content and increased AQP9 and glycerol permeability. A role of liver AQP8 and AQP9 is suggested in the different metabolic profiles resulting from milk supplementation.


Subject(s)
Aquaporins , Liver , Cattle , Female , Humans , Animals , Rats , Hepatocytes , Oxidation-Reduction , Dietary Supplements , Glucose , Lipids
4.
Cells ; 12(15)2023 08 05.
Article in English | MEDLINE | ID: mdl-37566082

ABSTRACT

Osmoregulation plays a vital role in sperm function, encompassing spermatogenesis, maturation, and fertilization. Aquaglyceroporins, a subclass of aquaporins (AQPs), facilitate the transport of water and glycerol across the sperm membrane, with glycerol serving as an important substrate for sperm bioenergetics. This study aimed to elucidate the significance of AQP-mediated glycerol permeability in sperm motility. The presence and localization of AQP3 and AQP7 in human sperm were assessed using immunofluorescence. Subsequently, the glycerol permeability of spermatozoa obtained from normozoospermic individuals (n = 30) was measured, using stopped-flow light scattering, after incubation with specific aquaporin inhibitors targeting AQP3 (DFP00173), AQP7 (Z433927330), or general aquaglyceroporin (phloretin). Sperm from asthenozoospermic men (n = 30) were utilized to evaluate the AQP7-mediated glycerol permeability, and to compare it with that of normozoospermic men. Furthermore, hypermotile capacitated sperm cells were examined, to determine the AQP7 expression and membrane glycerol permeability. AQP3 was predominantly observed in the tail region, while AQP7 was present in the head, midpiece, and tail of human sperm. Our findings indicate that AQP7 plays a key role in glycerol permeability, as the inhibition of AQP7 resulted in a 55% decrease in glycerol diffusion across the sperm membrane. Importantly, this glycerol permeability impairment was evident in spermatozoa from asthenozoospermic individuals, suggesting the dysregulation of AQP7-mediated glycerol transport, despite similar AQP7 levels. Conversely, the AQP7 expression increased in capacitated sperm, compared to non-capacitated sperm. Hence, AQP7-mediated permeability may serve as a valuable indicator of sperm motility, and be crucial in sperm function.


Subject(s)
Aquaglyceroporins , Aquaporins , Asthenozoospermia , Humans , Male , Aquaglyceroporins/metabolism , Aquaporins/metabolism , Glycerol/metabolism , Permeability , Semen/metabolism , Sperm Capacitation , Sperm Motility
5.
Cells ; 12(2)2023 01 13.
Article in English | MEDLINE | ID: mdl-36672238

ABSTRACT

 [Aquaporins (AQPs) are a family of transmembrane channel proteins, widespread...].


Subject(s)
Aquaporins , Aquaporins/metabolism , Membrane Proteins/metabolism
6.
Adv Exp Med Biol ; 1398: 225-249, 2023.
Article in English | MEDLINE | ID: mdl-36717498

ABSTRACT

Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.


Subject(s)
Aquaporins , Exocrine Glands , Humans , Aquaporins/metabolism , Aquaporins/physiology , Brunner Glands/physiology , Mammary Glands, Human/physiology , Pancreas/physiology , Salivary Glands/physiology , Exocrine Glands/metabolism , Exocrine Glands/physiology
7.
Cell Mol Life Sci ; 79(12): 592, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36378343

ABSTRACT

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is crucial for fluid homeodynamics throughout the male reproductive tract. Previous evidence shed light on a potential molecular partnership between this channel and aquaporins (AQPs). Herein, we explore the role of CFTR on AQPs-mediated glycerol permeability in mouse Sertoli cells (mSCs). We were able to identify the expression of CFTR, AQP3, AQP7, and AQP9 in mSCs by RT-PCR, Western blot, and immunofluorescence techniques. Cells were then treated with CFTRinh-172, a specific CFTR inhibitor, and its glycerol permeability was evaluated by stopped-flow light scattering. We observed that CFTR inhibition decreased glycerol permeability in mSCs by 30.6% when compared to the control group. A DUOLINK proximity ligation assay was used to evaluate the endogenous protein-protein interactions between CFTR and the various aquaglyceroporins we identified. We positively detected that CFTR is in close proximity with AQP3, AQP7, and AQP9 and that, through a possible physical interaction, CFTR can modulate AQP-mediated glycerol permeability in mSCs. As glycerol is essential for the control of the blood-testis barrier and elevated concentration in testis results in the disruption of spermatogenesis, we suggest that the malfunction of CFTR and the consequent alteration in glycerol permeability is a potential link between male infertility and cystic fibrosis.


Subject(s)
Aquaporins , Glycerol , Animals , Male , Mice , Aquaporins/genetics , Aquaporins/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Glycerol/metabolism , Permeability , Sertoli Cells/metabolism
8.
Cells ; 11(19)2022 10 04.
Article in English | MEDLINE | ID: mdl-36231080

ABSTRACT

Aquaporin-9 (AQP9) is a facilitator of glycerol and other small neutral solute transmembrane diffusion. Identification of specific inhibitors for aquaporin family proteins has been difficult, due to high sequence similarity between the 13 human isoforms, and due to the limited channel surface areas that permit inhibitor binding. The few AQP9 inhibitor molecules described to date were not suitable for in vivo experiments. We now describe the characterization of a new small molecule AQP9 inhibitor, RG100204 in cell-based calcein-quenching assays, and by stopped-flow light-scattering recordings of AQP9 permeability in proteoliposomes. Moreover, we investigated the effects of RG100204 on glycerol metabolism in mice. In cell-based assays, RG100204 blocked AQP9 water permeability and glycerol permeability with similar, high potency (~5 × 10-8 M). AQP9 channel blocking by RG100204 was confirmed in proteoliposomes. After oral gavage of db/db mice with RG100204, a dose-dependent elevation of plasma glycerol was observed. A blood glucose-lowering effect was not statistically significant. These experiments establish RG100204 as a direct blocker of the AQP9 channel, and suggest its use as an experimental tool for in vivo experiments on AQP9 function.


Subject(s)
Aquaporins , Glycerol , Animals , Humans , Mice , Aquaporins/metabolism , Blood Glucose/metabolism , Glycerol/metabolism , Glycerol/pharmacology , Liver/metabolism , Mice, Inbred Strains , Water/metabolism
9.
Biomolecules ; 12(7)2022 06 27.
Article in English | MEDLINE | ID: mdl-35883453

ABSTRACT

Aquaporins (AQPs) are transmembrane channels essential for water, energy, and redox homeostasis, with proven involvement in a variety of pathophysiological conditions such as edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions. The 13 AQPs present in humans are widely distributed in all body districts, drawing cell lineage-specific expression patterns closely related to cell native functions. Compelling evidence indicates that AQPs are proteins with great potential as biomarkers and targets for therapeutic intervention. Aquaporin-9 (AQP9) is the most expressed in the liver, with implications in general metabolic and redox balance due to its aquaglyceroporin and peroxiporin activities, facilitating glycerol and hydrogen peroxide (H2O2) diffusion across membranes. AQP9 is also expressed in other tissues, and their altered expression is described in several human diseases, such as liver injury, inflammation, cancer, infertility, and immune disorders. The present review compiles the current knowledge of AQP9 implication in diseases and highlights its potential as a new biomarker for diagnosis and prognosis in clinical medicine.


Subject(s)
Aquaporins , Hydrogen Peroxide , Aquaporins/genetics , Biomarkers/metabolism , Glycerol/metabolism , Humans , Hydrogen Peroxide/metabolism , Liver/metabolism
10.
Front Immunol ; 13: 900906, 2022.
Article in English | MEDLINE | ID: mdl-35774785

ABSTRACT

Sepsis is caused by systemic infection and is a major health concern as it is the primary cause of death from infection. It is the leading cause of mortality worldwide and there are no specific effective treatments for sepsis. Gene deletion of the neutral solute channel Aquaporin 9 (AQP9) normalizes oxidative stress and improves survival in a bacterial endotoxin induced mouse model of sepsis. In this study we described the initial characterization and effects of a novel small molecule AQP9 inhibitor, RG100204, in a cecal ligation and puncture (CLP) induced model of polymicrobial infection. In vitro, RG100204 blocked mouse AQP9 H2O2 permeability in an ectopic CHO cell expression system and abolished the LPS induced increase in superoxide anion and nitric oxide in FaO hepatoma cells. Pre-treatment of CLP-mice with RG100204 (25 mg/kg p.o. before CLP and then again at 8 h after CLP) attenuated the hypothermia, cardiac dysfunction (systolic and diastolic), renal dysfunction and hepatocellular injury caused by CLP-induced sepsis. Post-treatment of CLP-mice with RG100204 also attenuated the cardiac dysfunction (systolic and diastolic), the renal dysfunction caused by CLP-induced sepsis, but did not significantly reduce the liver injury or hypothermia. The most striking finding was that oral administration of RG100204 as late as 3 h after the onset of polymicrobial sepsis attenuated the cardiac and renal dysfunction caused by severe sepsis. Immunoblot quantification demonstrated that RG100204 reduced activation of the NLRP3 inflammasome pathway. Moreover, myeloperoxidase activity in RG100204 treated lung tissue was reduced. Together these results indicate that AQP9 may be a novel drug target in polymicrobial sepsis.


Subject(s)
Aquaporins , Cardiomyopathies , Heart Diseases , Hypothermia , Kidney Diseases , Sepsis , Animals , Aquaporins/genetics , Hydrogen Peroxide/metabolism , Mice , Multiple Organ Failure , Sepsis/complications , Sepsis/drug therapy
11.
Int J Mol Sci ; 23(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35409378

ABSTRACT

The skin is the largest organ of the human body, serving as an effective mechanical barrier between the internal milieu and the external environment. The skin is widely considered the first-line defence of the body, with an essential function in rejecting pathogens and preventing mechanical, chemical, and physical damages. Keratinocytes are the predominant cells of the outer skin layer, the epidermis, which acts as a mechanical and water-permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. During this migration process, keratinocytes undertake a differentiation program known as keratinization process. Dysregulation of this differentiation process can result in a series of skin disorders. In this context, aquaporins (AQPs), a family of membrane channel proteins allowing the movement of water and small neutral solutes, are emerging as important players in skin physiology and skin diseases. Here, we review the role of AQPs in skin keratinization, hydration, keratinocytes proliferation, water retention, barrier repair, wound healing, and immune response activation. We also discuss the dysregulated involvement of AQPs in some common inflammatory dermatological diseases characterised by skin barrier disruption.


Subject(s)
Aquaporins , Dermatitis , Aquaporin 3/metabolism , Aquaporins/metabolism , Dermatitis/metabolism , Epidermis/metabolism , Humans , Keratinocytes/metabolism , Skin/metabolism , Water/metabolism
12.
Cells ; 10(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34944070

ABSTRACT

Aquaporins (AQPs) are a family of membrane channels facilitating diffusion of water and small solutes into and out of cells. Despite their biological relevance in osmoregulation and ubiquitous distribution throughout metazoans, the presence of AQPs in annelids has been poorly investigated. Here, we searched and annotated Aqp sequences in public genomes and transcriptomes of annelids, inferred their evolutionary relationships through phylogenetic analyses and discussed their putative physiological relevance. We identified a total of 401 Aqp sequences in 27 annelid species, including 367 sequences previously unrecognized as Aqps. Similar to vertebrates, phylogenetic tree reconstructions clustered these annelid Aqps in four clades: AQP1-like, AQP3-like, AQP8-like and AQP11-like. We found no clear indication of the existence of paralogs exclusive to annelids; however, several gene duplications seem to have occurred in the ancestors of some Sedentaria annelid families, mainly in the AQP1-like clade. Three of the six Aqps annotated in Alitta succinea, an estuarine annelid showing high salinity tolerance, were validated by RT-PCR sequencing, and their similarity to human AQPs was investigated at the level of "key" conserved residues and predicted three-dimensional structure. Our results suggest a diversification of the structures and functions of AQPs in Annelida comparable to that observed in other taxa.


Subject(s)
Annelida/genetics , Aquaporins/genetics , Evolution, Molecular , Amino Acid Sequence , Animals , Aquaporins/chemistry , Humans , Models, Molecular , Molecular Sequence Annotation , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics
13.
Front Med (Lausanne) ; 8: 693997, 2021.
Article in English | MEDLINE | ID: mdl-34277668

ABSTRACT

Changes of lipidic storage, oxidative stress and mitochondrial dysfunction may be involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Although the knowledge of intracellular pathways has vastly expanded in recent years, the role and mechanisms of circulating triggering factor(s) are debated. Thus, we tested the hypothesis that factors circulating in the blood of NAFLD patients may influence processes underlying the disease. Huh7.5 cells/primary human hepatocytes were exposed to plasma from 12 NAFLD patients and 12 healthy subjects and specific assays were performed to examine viability, H2O2 and mitochondrial reactive oxygen species (ROS) release, mitochondrial membrane potential and triglycerides content. The involvement of NLRP3 inflammasome and of signaling related to peroxisome-proliferator-activating-ligand-receptor-γ (PPARγ), sterol-regulatory-element-binding-protein-1c (SREBP-1c), nuclear-factor-kappa-light-chain-enhancer of activated B cells (NF-kB), and NADPH oxidase 2 (NOX2) was evaluated by repeating the experiments in the presence of NLRP3 inflammasome blocker, MCC950, and through Western blot. The results obtained shown that plasma of NAFLD patients was able to reduce cell viability and mitochondrial membrane potential by about 48 and 24% (p < 0.05), and to increase H2O2, mitochondrial ROS, and triglycerides content by about 42, 19, and 16% (p < 0.05), respectively. An increased expression of SREBP-1c, PPARγ, NF-kB and NOX2 of about 51, 121, 63, and 46%, respectively, was observed (p < 0.05), as well. Those effects were reduced by the use of MCC950. Thus, in hepatocytes, exposure to plasma from NAFLD patients induces a NAFLD-like phenotype by interference with NLRP3-inflammasome pathways and the activation of intracellular signaling related to SREBP-1c, PPARγ, NF-kB and NOX2.

14.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34299321

ABSTRACT

The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of ß-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.


Subject(s)
Breath Tests/methods , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Biomarkers/metabolism , Carcinoma, Hepatocellular/metabolism , Hepatocytes/metabolism , Humans , Liver/pathology , Liver/physiopathology , Liver Cirrhosis/metabolism , Liver Function Tests , Liver Neoplasms/metabolism , Mitochondria/pathology , Mitochondria, Liver/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/physiopathology , Obesity/metabolism
15.
Nutrients ; 13(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917063

ABSTRACT

In children and adolescents, obesity does not seem to depend on a reduction of resting energy expenditure (REE). Moreover, in this young population, the interactions between either age and obesity or between age and gender, or the role of leptin on REE are not clearly understood. To compare the levels of REE in children and adolescents we studied 181 Caucasian individuals (62% girls) classified on the basis of age- and sex-specific body mass index (BMI) percentile as healthy weight (n = 50), with overweight (n = 34), or with obesity (n = 97) and in different age groups: 8-10 (n = 38), 11-13 (n = 50), and 14-17 years (n = 93). REE was measured by indirect calorimetry and body composition by air displacement plethysmography. Statistically significant differences in REE/fat-free mass (FFM) regarding obesity or gender were not observed. Absolute REE increases with age (p < 0.001), but REE/FFM decreases (p < 0.001) and there is an interaction between gender and age (p < 0.001) on absolute REE showing that the age-related increase is more marked in boys than in girls, in line with a higher FFM. Interestingly, the effect of obesity on absolute REE is not observed in the 8-10 year-old group, in which serum leptin concentrations correlate with the REE/FFM (r = 0.48; p = 0.011). In conclusion, REE/FFM is not affected by obesity or gender, while the effect of age on absolute REE is gender-dependent and leptin may influence the REE/FFM in 8-10 year-olds.


Subject(s)
Energy Metabolism , Leptin/blood , Obesity/blood , Obesity/physiopathology , Rest , Sex Characteristics , Adiposity , Adolescent , Age Factors , Child , Cohort Studies , Female , Humans , Male
16.
Biochimie ; 188: 20-34, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33689852

ABSTRACT

Aquaglyceroporins are a group of the aquaporin (AQP) family of transmembrane water channels. While AQPs facilitate the passage of water, small solutes, and gases across biological membranes, aquaglyceroporins allow passage of water, glycerol, urea and some other solutes. Thanks to their glycerol permeability, aquaglyceroporins are involved in energy homeostasis. This review provides an overview of what is currently known concerning the functional implication and control of aquaglyceroporins in tissues involved in energy metabolism, i.e. liver, adipose tissue and endocrine pancreas. The expression, role and (dys)regulation of aquaglyceroporins in disorders affecting energy metabolism, and the potential relevance of aquaglyceroporins as drug targets to treat the alterations of the energy balance is also addressed.


Subject(s)
Aquaglyceroporins/physiology , Energy Metabolism , Adipose Tissue/metabolism , Adipose Tissue/physiopathology , Animals , Aquaglyceroporins/chemistry , Humans , Liver/metabolism , Liver/physiopathology , Pancreas/metabolism , Pancreas/physiopathology
17.
Cells ; 10(2)2021 02 18.
Article in English | MEDLINE | ID: mdl-33670755

ABSTRACT

Septic shock is the most severe complication of sepsis, being characterized by a systemic inflammatory response following bacterial infection, leading to multiple organ failure and dramatically high mortality. Aquaporin-9 (AQP9), a membrane channel protein mainly expressed in hepatocytes and leukocytes, has been recently associated with inflammatory and infectious responses, thus triggering strong interest as a potential target for reducing septic shock-dependent mortality. Here, we evaluated whether AQP9 contributes to murine systemic inflammation during endotoxic shock. Wild type (Aqp9+/+; WT) and Aqp9 gene knockout (Aqp9-/-; KO) male mice were submitted to endotoxic shock by i.p. injection of lipopolysaccharide (LPS; 40 mg/kg) and the related survival times were followed during 72 h. The electronic paramagnetic resonance and confocal microscopy were employed to analyze the nitric oxide (NO) and superoxide anion (O2-) production, and the expression of inducible NO-synthase (iNOS) and cyclooxigenase-2 (COX-2), respectively, in the liver, kidney, aorta, heart and lung of the mouse specimens. LPS-treated KO mice survived significantly longer than corresponding WT mice, and 25% of the KO mice fully recovered from the endotoxin treatment. The LPS-injected KO mice showed lower inflammatory NO and O2- productions and reduced iNOS and COX-2 levels through impaired NF-κB p65 activation in the liver, kidney, aorta, and heart as compared to the LPS-treated WT mice. Consistent with these results, the treatment of FaO cells, a rodent hepatoma cell line, with the AQP9 blocker HTS13268 prevented the LPS-induced increase of inflammatory NO and O2-. A role for AQP9 is suggested in the early acute phase of LPS-induced endotoxic shock involving NF-κB signaling. The modulation of AQP9 expression/function may reveal to be useful in developing novel endotoxemia therapeutics.


Subject(s)
Aquaporins/deficiency , Endotoxemia/immunology , Inflammation/immunology , Animals , Aquaporins/genetics , Aquaporins/immunology , Disease Models, Animal , Endotoxemia/genetics , Endotoxemia/pathology , Inflammation/genetics , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Knockout , Shock, Septic/genetics , Shock, Septic/immunology
18.
Biochim Biophys Acta Mol Basis Dis ; 1867(3): 166039, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33338597

ABSTRACT

Aquaporins (AQPs) are a family of channel proteins that facilitate the transport of water and small solutes across biological membranes. They are widely distributed throughout the organism, having a number of key functions, some of them unexpected, both in health and disease. Among the various diseases in which AQPs are involved, infertility has been overlooked. According to the World Health Organization (WHO) infertility is a global public health problem with one third of the couples suffering from subfertility or even infertility due to male or female factors alone or combined. Thus, there is an urgent need to unveil the molecular mechanisms that control gametes production, maturation and fertilization-related events, to more specifically determine infertility causes. In addition, as more couples seek for fertility treatment through assisted reproductive technologies (ART), it is pivotal to understand how these techniques can be improved. AQPs are heterogeneously expressed throughout the male and female reproductive tracts, highlighting a possible regulatory role for these proteins in conception. In fact, their function, far beyond water transport, highlights potential intervention points to enhance ART. In this review we discuss AQPs distribution and structural organization, functions, and modulation throughout the male and female reproductive tracts and their relevance to the reproductive success. We also highlight the most recent advances and research trends regarding how the different AQPs are involved and regulated in specific mechanisms underlying (in)fertility. Finally, we discuss the involvement of AQPs in ART-related processes and how their handling can lead to improvement of infertility treatment.


Subject(s)
Aquaporins/metabolism , Infertility/metabolism , Animals , Aquaporins/analysis , Biological Transport , Female , Fertility , Humans , Male , Reproduction , Reproductive Techniques, Assisted , Water/metabolism
19.
Cells ; 9(6)2020 06 04.
Article in English | MEDLINE | ID: mdl-32512939

ABSTRACT

Aquaporin-11 (AQP11) is expressed in human adipocytes, but its functional role remains unknown. Since AQP11 is an endoplasmic reticulum (ER)-resident protein that transports water, glycerol, and hydrogen peroxide (H2O2), we hypothesized that this superaquaporin is involved in ER stress induced by lipotoxicity and inflammation in human obesity. AQP11 expression was assessed in 67 paired visceral and subcutaneous adipose tissue samples obtained from patients with morbid obesity and normal-weight individuals. We found that obesity and obesity-associated type 2 diabetes increased (p < 0.05) AQP11 mRNA and protein in visceral adipose tissue, but not subcutaneous fat. Accordingly, AQP11 mRNA was upregulated (p < 0.05) during adipocyte differentiation and lipolysis, two biological processes altered in the obese state. Subcellular fractionation and confocal microscopy studies confirmed its presence in the ER plasma membrane of visceral adipocytes. Proinflammatory factors TNF-α, and particularly TGF-ß1, downregulated (p < 0.05) AQP11 mRNA and protein expression and reinforced its subcellular distribution surrounding lipid droplets. Importantly, the AQP11 gene knockdown increased (p < 0.05) basal and TGF-ß1-induced expression of the ER markers ATF4 and CHOP. Together, the downregulation of AQP11 aggravates TGF-ß1-induced ER stress in visceral adipocytes. Owing to its "peroxiporin" properties, AQP11 overexpression in visceral fat might constitute a compensatory mechanism to alleviate ER stress in obesity.


Subject(s)
Adipocytes/pathology , Aquaporins/metabolism , Endoplasmic Reticulum Stress/drug effects , Inflammation/pathology , Intra-Abdominal Fat/pathology , Obesity/pathology , Transforming Growth Factor beta1/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Adult , Aquaporins/genetics , Cell Differentiation/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Female , Gene Silencing/drug effects , Humans , Inflammation/complications , Inflammation/metabolism , Lipolysis/drug effects , Male , Middle Aged , Models, Biological , Obesity/complications , Tumor Necrosis Factor-alpha/pharmacology , Up-Regulation/drug effects
20.
Cell Physiol Biochem ; 54(3): 401-416, 2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32330379

ABSTRACT

BACKGROUND/AIMS: Oxidative stress and mitochondria dysfunction could be involved in the onset of non-alcoholic fatty liver disease (NAFLD) and in its progression to non-alcoholic steatohepatitis (NASH). Estrogens/phytoestrogens could counteract liver fat deposition with beneficial effects against NAFLD by unclear mechanisms. We aimed to analyze the protective effects elicited by genistein/estradiol in hepatocytes cultured in NAFLD-like medium on cell viability, triglycerides accumulation, mitochondrial function and oxidative stress and the role of NLRP3 inflammasome, toll like receptors 4 (TLR4), Akt and 5' AMP-activated protein kinase (AMPK)α1/2. METHODS: Human primary hepatocytes/hepatoma cell line (Huh7.5 cells) were incubated with a 2 mM mixture of oleate/palmitate in presence/absence of genistein/17ß-estradiol. In some experiments, Huh7.5 cells were exposed to various inhibitors of the above pathways and estrogenic receptors (ERs) and G protein-coupled estrogen receptor (GPER) blockers, before genistein/17ß-estradiol. Cell viability, mitochondrial membrane potential, reactive oxygen species and triglycerides content were examined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), 5,51,6,61-tetrachloro-1,11,3,31 tetraethylbenzimidazolyl carbocyanine iodide (JC-1), 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) and the Triglyceride Colorimetric Assay. The expression/activation of kinases was analyzed by means of Western blot. RESULTS: Genistein/17ß-estradiol protected hepatocytes against NAFLD-like medium, by preventing the loss of cell viability and mitochondrial function, triglycerides accumulation and peroxidation. The blocking of kinases, ERs and GPER was able to reduce the above effects, which were potentiated by NLRP3 inflammasome. CONCLUSION: Our findings suggest novel mechanisms underlying the protective effects elicited by phytoestrogens/estrogens against NAFLD/NASH and open novel therapeutic perspectives in the management of NAFLD in postmenopausal women.


Subject(s)
Cell Survival/drug effects , Estradiol/pharmacology , Genistein/pharmacology , Hepatocytes/drug effects , Inflammasomes/metabolism , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , AMP-Activated Protein Kinase Kinases , Cell Line , Hepatocytes/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Phytoestrogens/pharmacology , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Receptors, Estrogen/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , Toll-Like Receptor 4/metabolism , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...